
Riddler Solutions
Mostly computational solutions in Python

Vamshi Jandhyala

February 3, 2023

Contents
1 Where do the Rancher’s children roam? 1

2 Can You Knock Down The Last Bowling Pin? 2

3 Can You Find Your Pills? 4

4 Can You Make Room For Goats? 5

5 How Long Will Your Smartphone Distract You From Family Dinner? 6

6 Will The Neurotic Basketball Player Make His Next Free Throw? 7

7 Night Falls. A Storm Rolls In. Can You Cross The River? 8

8 How Many Cars Will Get Stuck In Traffic? 10

9 Will Someone Be Sitting In Your Seat On The Plane? 11

10 Should You Pay $250 To Play This Casino Game? 12

11 Should You Shoot Free Throws Underhand? 13

12 Can You Slay The Puzzle Of The Monsters’ Gems? 14

13 Can You Solve This Elevator Button Puzzle? 15

14 The Puzzle Of Misanthropic Neighbors? 16

15 You Have $1 Billion To Win A Space Race. Go. 17

16 Should The Grizzly Bear Eat The Salmon? 20

17 How Long Will It Take To Blow Out The Birthday Candles? 22

18 Who Steals The Most In A Town Full Of Thieves? 23

19 Can You Pick Up Sticks? Can You Help A Frogger Out? 25

20 How Do You Like Them Rectangles? 26

21 Will You Be A Ghostbuster Or A World Destroyer? 28

22 How Often Does The Senate Vote In Palindromes? 30

23 Where Will The Seven Dwarfs Sleep Tonight? 33

24 Help Us Find These Missing Pieces 35

25 When Will The Arithmetic Anarchists Attack? 37

ii

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

26 Can You Shuffle Numbers? Can You Find All The World Cup Results? 39

27 Can You Rescue The Paratroopers? 40

28 Will The Grasshopper Land In Your Yard? 41

29 The EternalQuestion: How Much Do These Apricots Weigh? 42

30 What Are The Odds You’d Already Have My Number? 43

31 What Comes After 840? The Answer May Surprise You 44

32 How Low Can You Roll? 45

33 How Many Ways Can You Raid The Candy Shop? 47

34 WhoWants To Be A Riddler Millionaire? 48

35 Can You Track The Delirious Ducks? 49

36 Can You Find A Number Worth Its Weight In Letters? 51

37 Can You Solve The Vexing Vexillology? 53

38 Can You Find A Matching Pair Of Socks? 56

39 Can You Get A Haircut Already? 57

40 How Good Are You At Guess Who? 60

41 Can You Time The Stoplight Just Right? 63

42 Same number on all the dies 64

43 Can You Tell When The Snow Started? 66

44 Can you flip the magic coin? 67

45 Centered Pentagonal Number 68

46 Breaking a slide rule into four pieces 70

47 Can You Reach The Summit First? 73

48 Can You Cut The Square . . . Into More Squares? 75

49 Can You Hunt For The Mysterious Numbers? 77

50 Can You Skillfully Ski The Slopes? 80

51 Little Cubes 82

52 Can You Randomly Move The Tower? 83

iii

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

53 Can You Cross Like A Boss? 85

54 Will The Knight Return Home? 87

55 The Puzzle Of The Lonesome King 88

56 How Much Will The Picky Eater Eat? 89

57 En Garde! Can You Win The Fencing Relay? 90

58 Can You Slice The Ice? 92

59 Can you stick it to the genie? 93

60 How Many Friends Are On The Riddler Social Network? 94

61 Can You Survive Squid Game? 96

62 Who Betrayed Dune’s Duke Leto? 98

63 Can You Climb Your Way To Victory? 100

64 Can You Bake The Radish Pie? 103

65 Can You Get The Paper Cut? 107

66 Can You Draft A Riddler Fantasy Football Dream Team? 110

67 Can you catch the cricket? 112

68 Are You Clever Enough? 115

69 Will Riddler Nation Win Gold In Archery? 118

70 Can You Hop Across The Chess Board? 121

71 Can You Win The Penalty Shootout? 125

72 Can You Solve This Astronomical Enigma? 127

73 Can You Decipher The Secret Message? 130

74 Can You Crack The Case Of The Crystal Key? 133

75 No Isosceles Triangles For You! 135

76 Can You Systematically Solve A Friday Crossword? 137

77 Can You Cut The Perfect Pancake? 139

78 Can You Crack The Case Of The Crescent Moon? 140

79 Can You Navigate The One-Way Streets? 141

iv

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

80 Can You Find An Extra Perfect Square? 143

81 Can You Bake The Biggest Pie? 145

82 Can You Bat .299 In 299 Games? 146

83 How Many Ways Can You Build A Staircase? 148

84 Can You Win Riddler Jenga? 150

85 Can you find the luckiest coin? 153

86 Work A Shift In The Riddler Gift Shop 156

87 It’s Elementary, My Dear Riddler! 157

88 Can You Fold All Your Socks? 158

89 Can You Salvage Your Rug? 159

90 Can You Make The Fidget Spinner Go Backwards? 160

91 When Will The Fall Colors Peak? 162

92 Can you knock down the gates? 163

93 How Many Turkey Trotters Can You Pass? 165

94 Can You Win The Riddler Football Playoff? 166

v

1 Where do the Rancher’s children
roam?

Consider four square-shaped ranches arranged in a 2-by-2 pattern, as if part of a larger
checkerboard. One family lives on each ranch, and each family builds a small house indepen-
dently at a random place within the property. Later, as the families in adjacent quadrants
become acquainted, they construct four straight-line paths between the houses that go across
the boundaries between the ranches. These paths form a quadrilateral circuit path connecting
all four houses. This circuit path is also the boundary of the area where the families’ children
are allowed to roam. What is the probability that the children are able to travel in a straight
line from any allowed place to any other allowed place without leaving the boundaries? (In
other words, what is the probability that the quadrilateral is convex?)

Solution
The idea is to use Monte Carlo simulation to generate thousands of quadrilaterals and count
the percentage of quadrilaterals that are convex. For convex polygons, all internal angles are
less than 180 degrees. We will check each internal angle by determining the sign of the angle
created by the two vectors intersecting at each vertex. This can be done by taking the sign
of determinant of the two vectors. If all angles are the same direction(sign), the polygon is
convex else it is concave. Using the Python code for the simulation given below we see that
the probability of the quadrilateral being convex is 0.908288.

from numpy.linalg import det
from numpy import sign, array

def isConvex(poly):
n = len(poly)
prev = sign(det(array([poly[0]-poly[1],poly[2]-poly[1]])))
for i in range(1,n):
curr = sign(det(array([poly[i]-poly[(i+1)%n],poly[(i+2)%n]-poly[(i+1)%n]])))
if prev != curr:
return False

prev = curr
return True

from numpy.random import uniform
runs = 1000000
cnt_convex = 0
for _ in range(runs):

q1=array([uniform(0, 1), uniform(0, 1)])
q2=array([uniform(-1, 0), uniform(0, 1)])
q3=array([uniform(-1, 0), uniform(-1, 0)])
q4=array([uniform(0, 1), uniform(-1, 0)])
if isConvex(array([q1,q2,q3,q4])):

cnt_convex += 1
print(cnt_convex/runs)

1

2 Can You Knock Down The Last
Bowling Pin?

Magritte the bowler is back! This time, he is competing head-to-head against fellow bowler
Fosse. However, rather than knocking down 10 pins arranged in a triangular formation, they
are trying to knock down N2 pins (where N is some very, very large number) arranged in a
rhombus, as shown below:

WhenMagritte rolls, he always knocks down the topmost pin. Then, if any pin gets knocked
down, it has a 50 percent chance of knocking down either of the two pins directly behind it,
independently of each other. (If there is only one pin directly behind it, then it too has a 50
percent chance of being knocked over.)
Fosse is a stronger bowler than Magritte. Like Magritte, she always knocks down the

topmost pin. But each pin that’s knocked down then has a 70 percent chance (rather than
Magritte’s 50 percent) of knocking down any of the pins directly behind it.

What are Magritte’s and Fosse’s respective probabilities of knocking down the bottommost
pin in the rhombus formation?

Solution
This happens to be an unsolved problem from percolation theory. Instead of trying to find
a closed form analytical solution, we will rely on numerical simulation. For the simulation,
we first create a directed graph corresponding to the rhombic layout of the pins. Each pin
corresponds to a node in the graph and it connected by a directed edge to one or two pins
below that can be knocked down by it. In each run of the simulation we iteratively (maximum

2

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

number of iterations per run is 2n-2) identify the pins that are knocked down by looking at
the neighbours of the pins that were knocked down in the previous level and the probability
of each pin being knocked down. From the Monte Carlo simulation we see that the probability
of Magritte’s knocking down the bottommost pin in the rhombus formation is 0 and that of
Fosse’s is 0.583.

def create_rhombic_pin_graph(n):
pin_graph = nx.DiGraph()
for i in range(1,n^2+1):

pin_graph.add_node(i)
prev = [1]
for i in range(2,n+1):

curr, l = [], prev[-1]
for _ in range(i):

l += 1
curr.append(l)

for j,k in enumerate(prev):
pin_graph.add_edge(k,curr[j])
pin_graph.add_edge(k,curr[j+1])

prev = curr
for i in range(n-1,0,-1):

curr, l = [], prev[-1]
for _ in range(i):

l += 1
curr.append(l)

for j,k in enumerate(curr):
pin_graph.add_edge(prev[j],k)
pin_graph.add_edge(prev[j+1],k)

prev = curr
return pin_graph

from random import random

def isKnocked(prob):
if random()<prob:

return True
else:

return False

def prob_last_pin_knocked(knock_prob, n_pins=500, runs = 10000):
pin_graph = create_rhombic_pin_graph(n_pins)
cnt_success = 0
for _ in range(runs):

p_knckd = set([1])
for _ in range(2*n_pins-2):

c_knckd = set()
for p in p_knckd:

for nbr in pin_graph[p].keys():
if isKnocked(knock_prob):

c_knckd.add(nbr)
p_knckd = c_knckd.copy()

if n_pins**2 in p_knckd:
cnt_success += 1

return cnt_success/runs

print(prob_last_pin_knocked(0.7))

3

3 Can You Find Your Pills?
I’ve been prescribed to take 1.5 pills of a certain medication every day for 10 days, so I have

a bottle with 15 pills. Each morning, I take two pills out of the bottle at random.
On the first morning, these are guaranteed to be two full pills. I consume one of them,

split the other in half using a precision blade, consume half of that second pill, and place the
remaining half back into the bottle.

On subsequent mornings when I take out two pills, there are three possibilities:
I get two full pills. As on the first morning, I split one and place the unused half back into

the bottle. I get one full pill and one half-pill, both of which I consume. I get two half-pills. In
this case, I take out another pill at random. If it’s a half-pill, then I consume all three halves.
But if it’s a full pill, I split it and place the unused half back in the bottle. Assume that each
pill — whether it is a full pill or a half-pill — is equally likely to be taken out of the bottle.
On the 10th day, I again take out two pills and consume them. In a rush, I immediately

throw the bottle in the trash before bothering to check whether I had just consumed full pills
or half-pills. What’s the probability that I took the full dosage, meaning I don’t have to dig
through the trash for a remaining half-pill?

Solution
The Python code for the Monte Carlo simulation below gives us a probability of 0.79 for
taking the full dosage.

from random import sample
runs, n_pills, n_days = 100000, 15, 10
cnt_full_dose = 0
for _ in range(runs):

pills = [('f',i) for i in range(n_pills)]
for _ in range(n_days-1):
consumed_pills = sample(pills,2)
for p in consumed_pills:
pills.remove(p)

(s1,i), (s2,_) = consumed_pills
if s1=='f' and s2=='f':
pills.append(('h',i))

if s1=='h' and s2=='h':
pill = sample(pills,1)[0]
pills.remove(pill)
if pill[0]=='f':
pills.append(('h',pill[1]))

if len(pills)==2:
cnt_full_dose += 1

print(cnt_full_dose/runs)

4

4 Can You Make Room For Goats?
A goat tower has 10 floors, each of which can accommodate a single goat. Ten goats

approach the tower, and each goat has its own (random) preference of floor. Multiple goats
can prefer the same floor.
One by one, each goat walks up the tower to its preferred room. If the floor is empty, the

goat will make itself at home. But if the floor is already occupied by another goat, then it will
keep going up until it finds the next empty floor, which it will occupy. But if it does not find
any empty floors, the goat will be stuck on the roof of the tower.
What is the probability that all 10 goats will have their own floor, meaning no goat is left

stranded on the roof of the tower?

Solution
Here is the Python code for a Monte Carlo simulation. The probability that no goat is left
stranded on the roof of the tower is 0.235745.

from random import choices
runs, n_goats = 1000000, 10
cnt_success = 0
for _ in range(runs):

tower = [-1 for _ in range(n_goats)]
for i,j in enumerate(choices(range(n_goats), k=n_goats)):

if tower[j]==-1:
tower[j]=i

else:
k = j+1
while k < n_goats-1 and tower[k]!=-1:

k += 1
if k <= n_goats-1:

tower[k] = i
if -1 not in tower:

cnt_success += 1
print(cnt_success/runs)

5

5 How Long Will Your Smartphone
Distract You From Family Dinner?

You’ve just finished unwrapping your holiday presents. You and your sister got brand-new
smartphones, opening them at the same moment. You immediately both start doing important
tasks on the Internet, and each task you do takes one to five minutes. (All tasks take exactly
one, two, three, four or five minutes, with an equal probability of each). After each task, you
have a brief moment of clarity. During these, you remember that you and your sister are
supposed to join the rest of the family for dinner and that you promised each other you’d
arrive together. You ask if your sister is ready to eat, but if she is still in the middle of a task,
she asks for time to finish it. In that case, you now have time to kill, so you start a new task
(again, it will take one, two, three, four or five minutes, exactly, with an equal probability of
each). If she asks you if it’s time for dinner while you’re still busy, you ask for time to finish
up and she starts a new task and so on. From the moment you first open your gifts, how long
on average does it take for both of you to be between tasks at the same time so you can finally
eat? (You can assume the “moments of clarity” are so brief as to take no measurable time at
all.)

Solution
From the Python code below using Monte-Carlo simulation, we see that on average it takes

from random import randrange
from itertools import accumulate

def break_points():
return set(accumulate([randrange(1, 6) for _ in range(100)]))

runs = 10000
s_runs, total_t = 0, 0
for _ in range(runs):

brother, sister = break_points(), break_points()
common_points = brother.intersection(sister)
if common_points:

total_t += min(common_points)
s_runs += 1

print(total_t/s_runs)

6

6 Will The Neurotic Basketball Player
Make His Next Free Throw?

A basketball player is in the gym practicing free throws. He makes his first shot, then misses
his second. This player tends to get inside his own head a little bit, so this isn’t good news.
Specifically, the probability he hits any subsequent shot is equal to the overall percentage of
shots that he’s made thus far. (His neuroses are very exacting.) His coach, who knows his
psychological tendency and saw the first two shots, leaves the gym and doesn’t see the next
96 shots. The coach returns, and sees the player make shot No. 99. What is the probability,
from the coach’s point of view, that he makes shot No. 100?

Solution
The probability from the coach’s point of view that the player will make shot No.100 is .666.

from random import random
runs = 100000
num_99s, num_99_100s = 0, 0
for _ in range(runs):

throws = 2
hits = 1
for _ in range(3, 99):

prob_next = hits/throws
throws += 1
if random() <= prob_next:

hits += 1
if random() <= (hits/throws):

throws += 1
hits += 1
num_99s += 1
if random() <= (hits/throws):

throws += 1
hits += 1
num_99_100s += 1

print(num_99_100s/num_99s)

7

7 Night Falls. A Storm Rolls In. Can
You Cross The River?

You’re on the north shore of a river, and want to cross to the south, via a series of 13 bridges
and six islands, which you can see in the diagram below. But, as you approach the water, night
falls, a bad storm rolls in, and you’re forced to wait until morning to try to cross. Overnight,
the storm could render some of the bridges unusable — it has a 50 percent chance of knocking
out each of the bridges. (The chance is independent for each bridge.)

What’s the probability you will be able to cross the river in the morning? (You have no
boat, can’t swim, can’t fix the bridges, etc. No tricks.)

Solution
The probability that you will be able to cross the river in the morning is 0.5.

from collections import defaultdict
from random import random

def find_path(graph, start, end, path=[]):
path = path + [start]
if start == end:

return path
if start not in graph.keys():

return None
for node in graph[start]:

if node not in path:
newpath = find_path(graph, node, end, path)
if newpath: return newpath

return None

def create_graph(bridges):
graph = defaultdict(list)
for (n1, n2) in bridges:

8

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

graph[n1].append(n2)
graph[n2].append(n1)

return graph

runs = 100000
bridges = [(0,1), (0,2), (0,3), (1,2),

(1,4), (2,3), (2,5), (3,6),
(4,5), (4,7), (5,6), (6,7), (7,5)]

knock_out_prob = 0.5
cnt_success = 0
for _ in range(runs):

remaining_bridges = []
for bridge in bridges:

if random() <= knock_out_prob:
remaining_bridges.append(bridge)

if find_path(create_graph(remaining_bridges), 0, 7):
cnt_success += 1

print(cnt_success/runs)

9

8 HowMany Cars Will Get Stuck In
Traffic?

There is a very long, straight highway with some number of cars (N) placed somewhere
along it, randomly. The highway is only one lane, so the cars can’t pass each other. Each car is
going in the same direction, and each driver has a distinct positive speed at which she prefers
to travel. Each preferred speed is chosen at random. Each driver travels at her preferred speed
unless she gets stuck behind a slower car, in which case she remains stuck behind the slower
car. On average, how many groups of cars will eventually form? (A group is one or more cars
travelling at the same speed.)
For example, if the car in the very front happens to be slowest, there will be exactly one

group — everybody will eventually pile up behind the slowpoke. If the cars happen to end up
in order, fastest to slowest, there will be N groups — no car ever gets stuck behind a slower
car.

Solution
from itertools import permutations

def groups(perm):
groups = 1
min_speed = perm[0]
for i in range(1, len(perm)):

if perm[i] < min_speed:
groups += 1
min_speed = perm[i]

return groups

runs = 11
for n in range(2, runs):

cnt = 0
total_groups = 0
for p in permutations(range(n)):

total_groups += groups(p)
cnt += 1

print(total_groups/cnt)

10

9 Will Someone Be Sitting In Your
Seat On The Plane?

There’s an airplane with 100 seats, and there are 100 ticketed passengers each with an
assigned seat. They line up to board in some random order. However, the first person to board
is the worst person alive, and just sits in a random seat, without even looking at his boarding
pass. Each subsequent passenger sits in his or her own assigned seat if it’s empty, but sits
in a random open seat if the assigned seat is occupied. What is the probability that you, the
hundredth passenger to board, finds your seat unoccupied?

Solution
The probability of the hundredth passenger finding his or her seat unoccupied is 0.5.

This probability is independent of the number of seats/passengers.

from random import sample

runs = 10000
num_seats = 100
cnt_success = 0
for _ in range(runs):

seats = set(range(num_seats))
first_seat = sample(seats, 1)[0]
seats.remove(first_seat)
for i in range(1, num_seats-1):

if i in seats:
seats.remove(i)

else:
seat = sample(seats, 1)[0]
seats.remove(seat)

if num_seats-1 in seats:
cnt_success += 1

print(cnt_success/runs)

11

10 Should You Pay $250 To Play
This Casino Game?

Suppose a casino invents a new game that you must pay $250 to play. The game works
like this: The casino draws random numbers between 0 and 1, from a uniform distribution.
It adds them together until their sum is greater than 1, at which time it stops drawing new
numbers. You get a payout of $100 each time a new number is drawn.

For example, suppose the casino draws 0.4 and then 0.7. Since the sum is greater than 1, it
will stop after these two draws, and you receive $200. If instead it draws 0.2, 0.3, 0.3, and then
0.6, it will stop after the fourth draw and you will receive $400. Given the $250 entrance fee,
should you play the game?

Specifically, what is the expected value of your winnings?

Solution
The average winnings is ≈ 272.

from random import random

runs = 10000

def average_winnings(payout, runs = runs):
total = 0
for _ in range(runs):

total_draw = random()
total += payout
while(total_draw < 1):

total_draw += random()
total += payout

return total/runs

print("Average winnings: ", average_winnings(100))

12

11 Should You Shoot Free Throws
Underhand?

Hark! The NCAA Tournament starts next week, and the “granny shot” has reappeared as a
free throw technique. Its proponents claim that it improves accuracy because there are fewer
moving parts — the elbows and wrists are held more stable, for example, and the move is
symmetric because one’s arms are, more or less, equal length. Let’s find out how effective the
granny shot really is.
Consider the following simplified model of free throws. Imagine the rim to be a circle

(which we’ll call C) that has a radius of 1, and is centered at the origin (the point (0, 0)). Let V
be a random point in the plane, with coordinates X and Y, and where X and Y are independent
normal random variables, with means equal to zero and each having equal variance — think
of this as the point where your free throw winds up, in the rim’s plane. If V is in the circle,
your shot goes in. Finally, suppose that the variance is chosen such that the probability that
V is in C is exactly 75 percent (roughly the NBA free-throw average).
But suppose you switch it up, and go granny-style, which in this universe eliminates any

possible left-right error in your free throws. What’s the probability you make your shot now?
(Put another way, calculate the probability that |Y| < 1.)

Solution
R ∼ Rayleigh(σ) is Rayleigh distributed if R =

√
X2 + Y2, where X ∼ N(0,σ2) and Y ∼

N(0,σ2) are independent normal random variables.
From the above, it is clear that V follows the Rayleigh distribution.
The CDF of V is given by 1− e−x2/σ2 .
The fact that the shot goes in 75% of the time is equivalent to

P[V ⩽ 1] = 1− e−1/2σ2
= 0.75

Therefore, σ2 = 0.36 and Y ∼ N(0, 0.36).
The probability that |Y| < 1 is given by P[−1 ⩽ Y ⩽ 1] = 0.904419.

13

12 Can You Slay The Puzzle Of The
Monsters’ Gems?

A video game requires you to slay monsters to collect gems. Every time you slay a monster,
it drops one of three types of gems: a common gem, an uncommon gem or a rare gem. The
probabilities of these gems being dropped are in the ratio of 3:2:1 — three common gems for
every two uncommon gems for every one rare gem, on average. If you slay monsters until
you have at least one of each of the three types of gems, how many of the most common
gems will you end up with, on average?

Solution
from random import random

runs = 100000
total_c = 0
for _ in range(runs):

c, u, r = 0, 0, 0
while(True):

p = random()
if p <= 1/6:

r += 1
elif p >= 1/6 and p <= 1/2:

u += 1
else:

c += 1
if c > 0 and r > 0 and u > 0:

break
total_c += c

print("Average number of common gems:", total_c/runs)

The average number of common gems collected before we have one of each gem is 3.65.

14

13 Can You Solve This Elevator
Button Puzzle?

In a building’s lobby, some number (N) of people get on an elevator that goes to some
number (M) of floors. There may be more people than floors, or more floors than people.
Each person is equally likely to choose any floor, independently of one another. When a
floor button is pushed, it will light up. What is the expected number of lit buttons when the
elevator begins its ascent?

Solution
Let L = F1 + F2 + F3 + . . . FM be the random variable indicating the number of lit buttons
where Fi is the indicator random variable which is 1 when at least 1 person chooses floor i
and 0 otherwise.

P[Fi = 1] = 1− (M−1
M

)N where (M−1
M

)N is the probability of no one selecting floor i.
Therefore E[L] = E[

∑M
i=1 Fi] = M(1− (M−1

M
)N).

Computational solution
from random import random, choice
from collections import Counter

n, m = 30, 20
runs = 10000
total_lit = 0
for _ in range(runs):

choices = [choice(range(m)) for _ in range(n)]
num_lit = sum([1 if c > 0 else 0 for l, c in Counter(choices).items()])
total_lit += num_lit

print(total_lit/runs)

15

14 The Puzzle Of Misanthropic
Neighbors?

The misanthropes are coming. Suppose there is a row of some number, N, of houses in
a new, initially empty development. Misanthropes are moving into the development one at
a time and selecting a house at random from those that have nobody in them and nobody
living next door. They keep on coming until no acceptable houses remain. At most, one out of
two houses will be occupied; at least one out of three houses will be. But what’s the expected
fraction of occupied houses as the development gets larger, that is, as N goes to infinity?

Solution
The fraction of the occupied houses for large n is approximately is 0.4325773.

from random import sample

runs = 10000
n = 1000
total_occupancy = 0
for _ in range(runs):

remaining_houses = set(range(n))
chosen_houses = []
while remaining_houses:

chosen_house = sample(remaining_houses, 1)[0]
chosen_houses.append(chosen_house)
remaining_houses.discard(chosen_house)
for adj in [-1, 1]:

remaining_houses.discard(chosen_house + adj)
total_occupancy += len(chosen_houses)

print(total_occupancy/(n*runs))

16

15 You Have $1 Billion To Win A
Space Race. Go.

You are the CEO of a space transport company in the year 2080, and your chief scientist
comes in to tell you that one of your space probes has detected an alien artifact at the Jupiter
Solar Lagrangian (L2) point.
You want to be the first to get to it! But you know that the story will leak soon and you

only have a short time to make critical decisions. With standard technology available to
anyone with a few billion dollars, a manned rocket can be quickly assembled and arrive at
the artifact in 1,600 days. But with some nonstandard items you can reduce that time and
beat the competition. Your accountants tell you that they can get you an immediate line of
credit of $1 billion.

You can buy:
Big Russian engines. There are only three in the world and the Russians want $400 million

for each of them. Buying one will reduce the trip time by 200 days. Buying two will allow you
to split your payload and will save another 100 days. NASA ion engines. There are only eight
of these $140 million large-scale engines in the world. Each will consume 5,000 kilograms
of xenon during the trip. There are 30,000 kg of xenon available worldwide at a price of
$2,000/kg, so 5,000 kg costs $10 million. Bottom line: For each $150 million fully fueled xenon
engine you buy, you can take 50 days off of the trip. Light payloads. For $50 million each,
you can send one of four return flight fuel tanks out ahead of the mission, using existing
technology. Each time you do this, you lighten the main mission and reduce the arrival time
by 25 days. What’s your best strategy to get there first?

Solution
from itertools import product

#Number available
num_re = 3
num_ie = 8
num_ft = 4
num_xe = 6 #30000/5000

#Costs in millions
re_cost = 400
ie_cost = 140
ft_cost = 50
xe_cost = 10

#Savings in days
ie_saving = 50
ft_saving = 25
re_saving = {0:0, 1:200, 2:300, 3:500}

#Available loan
loan = 1000

optimal_sols =[]

17

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

for r, i, f, x in product(range(num_re+1), range(num_ie+1),
range(num_ft+1), range(num_xe+1)):

days_saved = f*ft_saving + min(x, i)*ie_saving + re_saving[r]
total_cost = f*ft_cost + i*ie_cost + r*re_cost + x*xe_cost
days_savings_avlbl = (num_ft-f)*ft_saving + \

min(num_ie-i, num_xe-x)*ie_saving + re_saving[num_re-r]
if total_cost <= loan and days_saved > days_savings_avlbl:

optimal_sols.append((days_savings_avlbl, days_saved, r, i, f, x))

for dsa, ds, r, i, f , x in optimal_sols:
print("Number of Russian Engines: ", r)
print("Number of Ion Engines: ", i)
print("Number of Fuel Tanks: ", f)
print("Number of Xenon kgs: ", x*5000)
print("Total number of days saved: ", ds)
print("Total day savings available: ", dsa)
print("\n")

Valid combinations
Number of Russian Engines: 1

Number of Ion Engines: 1
Number of Fuel Tanks: 4
Number of Xenon kgs: 30000
Total number of days saved: 350
Total day savings available: 300

Number of Russian Engines: 1
Number of Ion Engines: 2
Number of Fuel Tanks: 3
Number of Xenon kgs: 30000
Total number of days saved: 375
Total day savings available: 325

Number of Russian Engines: 1
Number of Ion Engines: 2
Number of Fuel Tanks: 4
Number of Xenon kgs: 25000
Total number of days saved: 400
Total day savings available: 350

Number of Russian Engines: 1
Number of Ion Engines: 2
Number of Fuel Tanks: 4
Number of Xenon kgs: 30000
Total number of days saved: 400
Total day savings available: 300

Number of Russian Engines: 1
Number of Ion Engines: 3
Number of Fuel Tanks: 2
Number of Xenon kgs: 30000

18

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Total number of days saved: 400
Total day savings available: 350

Number of Russian Engines: 2
Number of Ion Engines: 0
Number of Fuel Tanks: 1
Number of Xenon kgs: 30000
Total number of days saved: 325
Total day savings available: 275

Number of Russian Engines: 2
Number of Ion Engines: 0
Number of Fuel Tanks: 2
Number of Xenon kgs: 25000
Total number of days saved: 350
Total day savings available: 300

Number of Russian Engines: 2
Number of Ion Engines: 0
Number of Fuel Tanks: 2
Number of Xenon kgs: 30000
Total number of days saved: 350
Total day savings available: 250

Number of Russian Engines: 2
Number of Ion Engines: 0
Number of Fuel Tanks: 3
Number of Xenon kgs: 20000
Total number of days saved: 375
Total day savings available: 325

Number of Russian Engines: 2
Number of Ion Engines: 0
Number of Fuel Tanks: 3
Number of Xenon kgs: 25000
Total number of days saved: 375
Total day savings available: 275

Number of Russian Engines: 2
Number of Ion Engines: 1
Number of Fuel Tanks: 0
Number of Xenon kgs: 30000
Total number of days saved: 350
Total day savings available: 300

19

16 Should The Grizzly Bear Eat The
Salmon?

A grizzly bear stands in the shallows of a river during salmon spawning season. Precisely
once every hour, a fish swims within its reach. The bear can either catch the fish and eat it, or
let it swim past to safety. This grizzly is, as many grizzlies are, persnickety. It’ll only eat fish
that are at least as big as every fish it ate before.
Each fish weighs some amount, randomly and uniformly distributed between 0 and 1

kilogram. (Each fish’s weight is independent of the others, and the skilled bear can tell how
much each weighs just by looking at it.) The bear wants to maximize its intake of salmon, as
measured in kilograms. Suppose the bear’s fishing expedition is two hours long. Under what
circumstances should it eat the first fish within its reach? What if the expedition is three
hours long?

Solution
Let Xi be the random variable denoting the weight of fish seen each hour where i = 1, 2, . . . ,n.

We have Xi ∼ U(0, 1) for i = 1, 2, . . . ,n.

Greedy Strategy
By following the **Greedy Strategy**, the bear eats as much salmon as it can starting with
the first salmon in the first hour.

Let Yi be the weight of the fish consumed in the ith hour using the greedy strategy.
We have the following equations for the greedy strategy:

Zi =

n∑
i

Yi (16.1)

Y1 = X1 (16.2)
Yi = Xi, if Xi ⩾ max(X1,X2, . . . ,Xi−1) and i > 1 (16.3)

The distribution function and the density function of a randomvariableMi−1 = max(X1,X2, . . . ,Xi−1)
are given by

FMi−1(x) = xi−1 (16.4)
fMi−1(x) = (i− 1)xi−2 (16.5)

where Xi ∼ U(0, 1) and i = 2, 3, . . . ,n.
From 16.3, we have

E[Yi|Mi−1] =

∫ 1

Mi−1

xidxi =
1
2 −

M2
i−1
2 (16.6)

The expectation ofM2
i−1 can be calculated as follows

20

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

E[M2
i−1] =

∫ 1

0
m2fMi−1(m)dm =

∫ 1

0
m2(i− 1)mi−2dm =

i− 1
i+ 1 (16.7)

From 16.6, we have

E[Yi] = E[E[Yi|Mi−1]] =
1
2 −

1
2E[M

2
i−1] =

1
2 −

1
2
i− 1
i+ 1 =

1
i+ 1 (16.8)

Two hour expedition
To get the average total weight of salmon consumed by bear in 2 hours under the greedy
strategy we need to calculate E[Z2].

E[Z2] = E[Y1] + E[Y2] =
1
2 +

1
3 =

5
6 (16.9)

Three hour expedition
To get the average total weight of salmon consumed by bear in 3 hours under the greedy
strategy we need to calculate E[Z3].

E[Z3] =

3∑
i=1

E[Yi] =
1
2 +

1
3 +

1
4 =

13
12 (16.10)

from random import random

runs = 100000

total_weight = 0
for _ in range(runs):

r1, r2 = random(), random()
total_weight += r1
if r2 > r1:

total_weight += r2

print("Avg weight of fish consumed in 2 hrs :", total_weight/runs)

total_weight = 0
for _ in range(runs):

r1, r2, r3 = random(), random(), random()
total_weight += r1
if r2 > r1:

total_weight += r2
if r3 > r2:

total_weight += r3
else:

if r3 > r1:
total_weight += r3

print("Avg weight of fish consumed in 3 hrs :", total_weight/runs)

The bear should always eat the first fish.

21

17 How Long Will It Take To Blow
Out The Birthday Candles?

It’s your 30th birthday (congrats, by the way), and your friends bought you a cake with 30
candles on it. You make a wish and try to blow them out. Every time you blow, you blow out
a random number of candles between one and the number that remain, including one and
that other number. How many times do you blow before all the candles are extinguished, on
average?

Solution
from random import randint

num_candles = 30
runs = 10000

total_num = 0
for _ in range(runs):

candles = num_candles
n = 0
while(candles):

blown = randint(1, candles)
candles -= blown
n += 1

total_num += n
print("Average number of blows: ", total_num/runs)

The average number of blows based on the simulation above is ≈ 4.

22

18 Who Steals The Most In A Town
Full Of Thieves?

Riddler Express
You’re driving a car down a two-mile track. For the first mile, you drive 30 miles per hour.
How fast do you have to go for the second mile in order to average 60 miles per hour for the
whole track?

Solution
We have the following equation:

60 = 2
1
30 +

1
s

From the above it is obvious that achieving an average speed of 60 miles per hour is not
possible.

Riddler Classic
A town of 1, 000 households has a strange law intended to prevent wealth-hoarding. On
January 1 of every year, each household robs one other household, selected at random, moving
all of that house’s money into their own house. The order in which the robberies take place is
also random and is determined by a lottery. (Note that if House A robs House B first, and
then C robs A, the houses of A and B would each be empty and C would have acquired the
resources of both A and B.)

Two questions about this fateful day:
What is the probability that a house is not robbed over the course of the day?
Suppose that every house has the same amount of cash to begin with — say $100. Which

position in the lottery has the most expected cash at the end of the day, and what is that
amount?

Solution
from random import sample

runs = 10000
num_houses = 1000
final_amts = [0] * num_houses
total_num_safe = 0

rob_choices = {i:(set(range(num_houses))-set([i]))
for i in range(num_houses)}

lottery = list(range(num_houses))
rob = [None] * num_houses
amts = [None] * num_houses
for _ in range(runs):

23

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

for i in range(num_houses):
amts[i] = 100
rob[i] = sample(rob_choices[i], 1)[0]

total_num_safe += (num_houses - len(set(rob)))
shuffle(lottery)
for h in lottery:

amts[h] += amts[rob[h]]
amts[rob[h]] = 0

for i,j in enumerate(lottery):
final_amts[i] += amts[j]

print(total_num_safe/(runs*num_houses))
amt, pos = max(zip(final_amts, range(num_houses)))
print(amt/runs, pos)

The percent of houses that are not robbed on average is 37. The position in the lottery with
the most expected cash is the last position and the maximum expected cash amount is $137.

24

19 Can You Pick Up Sticks? Can
You Help A Frogger Out?

A frog needs to jump across 20 lily pads. He starts on the shore (Number 0) and ends
precisely on the last lily pad (Number 20). He can jump one or two lily pads at a time. How
many different ways can he reach his destination?

What if he can jump one, two or three at a time? Or four? Five? Six? Etc.

Solution
Let Jn be the number of jumps required by the frog to reach the nth lily pad. It is easy to see
that Jn = Jn−1 + Jn−2 and J1 = 1 and J2 = 2.

Therefore Jn is the Fibonacci Sequence.

25

20 How Do You Like Them
Rectangles?

Riddler Express

Solution
The length of the top rectangle = 24/4 = 6 in.

The length of the bottom rectangle = 6+ 3+ 2 = 11 in.
The height of the bottom rectangle = 44/11 = 4 in

26

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Riddler Classic

Solution
Let xin and yin be the length and height of the shaded rectangle.

We have the following constraints:

(14− x)y = 45 (20.1)
(11− y)x = 32 (20.2)

66
11− y

< 14 =⇒ y <
44
7 (20.3)

Subtracting (2) from (1) we have 14y− 11x = 13.
Substituting y = 13+11x

14 in (1), we have

13+ 11x− 13x/14− 11x2/14 = 45
=⇒ 11x2 − 141x+ 448 = 0

=⇒ x =
141±

√
1412 − 4 · 11 · 448
2 · 11

=⇒ x = 7 and y =
45
7 or x =

64
11 and y =

11
2

The first solution has to be discarded because of constraint (3).
The area of the shaded region is xy = 64

11
11
2 = 32 in.2

27

21 Will You Be A Ghostbuster Or A
World Destroyer?

Here are four questions of increasing difficulty about finding sticks in the woods, breaking
them and making shapes:

Problem 1
If you break a stick in two places at random, forming three pieces, what is the probability of
being able to form a triangle with the pieces?

Solution
from random import random

runs, s = 1000000, 0
for _ in range(runs):

r1,r2 = random(), random()
if r2 > r1:

x1, x2, x3 = r1, r2 - r1, 1 - r2
else:

x1, x2, x3 = r2, r1 - r2, 1 - r1
if (x1 + x2 > x3) and (x2 + x3 > x1) and (x1 + x3 > x2): s += 1

print(s/runs)

The probability is 0.25.

Problem 2
If you select three sticks, each of random length (between 0 and 1), what is the probability of
being able to form a triangle with them?

Solution
from random import random

runs, s = 1000000, 0
for _ in range(runs):

x1,x2,x3 = random(), random(), random()
if (x1 + x2 > x3) and (x2 + x3 > x1) and (x1 + x3 > x2): s += 1

print(s/runs)

The probability is 0.079256.

Problem 3
If you break a stick in two places at random, what is the probability of being able to form an
acute triangle — where each angle is less than 90 degrees — with the pieces?

28

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Solution
from random import random
runs, s = 1000000, 0

for _ in range(runs):
r1,r2 = random(), random()
if r2 > r1:

x1, x2, x3 = r1, r2 - r1, 1 - r2
else:

x1, x2, x3 = r2, r1 - r2, 1 - r1
if (x1 + x2 > x3) and (x2 + x3 > x1) and (x1 + x3 > x2):

cos_a = (x1**2 + x2**2 - x3**2)/2*x1*x2
cos_b = (x1**2 + x3**2 - x2**2)/2*x1*x3
cos_c = (x2**2 + x3**2 - x1**2)/2*x2*x3
if cos_a >= 0 and cos_b >= 0 and cos_c >=0:

s += 1
print(s/runs)

The probability is 0.214148.

Problem 4
If you select three sticks, each of random length (between 0 and 1), what is the probability of
being able to form an acute triangle with the sticks?

Solution
from random import random
runs, s = 1000000, 0

for _ in range(runs):
x1, x2, x3 = random(), random(), random()
if (x1 + x2 > x3) and (x2 + x3 > x1) and (x1 + x3 > x2):

cos_a = (x1**2 + x2**2 - x3**2)/2*x1*x2
cos_b = (x1**2 + x3**2 - x2**2)/2*x1*x3
cos_c = (x2**2 + x3**2 - x1**2)/2*x2*x3
if cos_a >= 0 and cos_b >= 0 and cos_c >=0:

s += 1
print(s/runs)

The probability is 0.214148.

29

22 How Often Does The Senate Vote
In Palindromes?

The famous four-color theorem states, essentially, that you can color in the regions of any
map using at most four colors in such a way that no neighboring regions share a color. A
computer-based proof of the theorem was offered in 1976.

Some 2,200 years earlier, the legendary Greek mathematician Archimedes described some-
thing called an Ostomachion. It’s a group of pieces, similar to tangrams, that divides a 12-by-12
square into 14 regions. The object is to rearrange the pieces into interesting shapes, such as a
Tyrannosaurus rex. It’s often called the oldest known mathematical puzzle.

Your challenge today: Color in the regions of the Ostomachion square with four colors
such that each color shades an equal area. (That is, each color needs to shade 36 square units.)

Extra credit: How many solutions to this challenge are there?

Solution
Let the areas be labelled as follows:

30

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

from z3 import *
from math import factorial

connections = {
0:[1,5,6], 1:[0,2,13], 2:[1,12,3,5], 3:[2,4,5],
4:[3,5], 5:[0,2,3,4,6], 6:[0,5], 7:[8,13], 8:[7,9],
9:[8,10], 10:[9,11,13], 11:[10,12], 12:[11,13,2], 13:[1,7,10,12]

}

areas = {
0:12, 1:6, 2:21, 3:3, 4:6, 5:12, 6:12,
7:24, 8:3, 9:9, 10:6, 11:12, 12:6, 13:12

}

col_map = {0:"Red", 1:"Blue", 2:"Green", 3:"Yellow", 4:"Orange", 5:"Pink"}

num_colours = 4
total_area = 144
def OstomachionSolver():

X = [Int("x_%s" % i) for i in range(14)]
s = Solver()
s.add([And(0 <= X[i], X[i]<= num_colours-1) for i in range(14)])
for c in range(num_colours):

s.add(sum([If(X[i] == c, areas[i], 0) for i in range(14)])
== (total_area//num_colours))

for i in range(14):
for j in connections[i]:

s.add(X[i] != X[j])

cnt_sol = 0
while s.check() == sat:

cnt_sol += 1
m = s.model()
s.add(Or([X[i] != m.eval(X[i]) for i in range(14)]))

print("Unique solutions :", cnt_sol / factorial(num_colours))
for i in range(14):

print("Area %d - %s " % (i , col_map[int(str(m.evaluate(X[i])))]))

OstomachionSolver()

A colouring which satisfies the constraints is as follows:

31

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Area 0 - Red
Area 1 - Yellow
Area 2 - Green
Area 3 - Yellow
Area 4 - Green
Area 5 - Blue
Area 6 - Yellow
Area 7 - Red
Area 8 - Green
Area 9 - Yellow
Area 10 - Green
Area 11 - Blue
Area 12 - Yellow
Area 13 - Blue

32

23 Where Will The Seven Dwarfs
Sleep Tonight?

Riddler Express
A kite shape is inscribed in a circle, as shown below.

What is the kite’s area?
A rectangle is drawn inside a quarter circle, as shown below.

What is the rectangle’s area?

Solution
The longer diagonal of the kite is the diameter of the circle because of symmetry. Therefore,
one half of a kite is a right angled triangle. The area of the kite is 40.

The diagonal of the rectangle is equal to the radius of the quadrant = 13. The length of the
rectangle is 12 by Pythagoras theorem. Therefor the area of the rectangle is 60.

Riddler Classic
Each of the seven dwarfs sleeps in his own bed in a shared dormitory. Every night, they retire
to bed one at a time, always in the same sequential order, with the youngest dwarf retiring
first and the oldest retiring last. On a particular evening, the youngest dwarf is in a jolly
mood. He decides not to go to his own bed but rather to choose one at random from among
the other six beds. As each of the other dwarfs retires, he chooses his own bed if it is not
occupied, and otherwise chooses another unoccupied bed at random.

33

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

What is the probability that the oldest dwarf sleeps in his own bed? What is the expected
number of dwarfs who do not sleep in their own beds?

Solution
Expected number of wrong beds: 2.86. Chance of oldest in own bed: 0.4168.

from random import sample

runs = 100000
num_dwarfs = 7
cnt_last_wrong_bed = 0
cnt_wrong_beds = 0
for _ in range(runs):

num_wrong_beds = 1
remaining_beds = set(range(num_dwarfs))
b = sample(range(1, num_dwarfs), 1)[0]
remaining_beds.discard(b)
for i in range(1, num_dwarfs-1):

if i in remaining_beds:
remaining_beds.discard(i)

else:
num_wrong_beds += 1
b = sample(remaining_beds, 1)[0]
remaining_beds.discard(b)

if num_dwarfs-1 not in remaining_beds:
cnt_last_wrong_bed += 1
num_wrong_beds += 1

cnt_wrong_beds += num_wrong_beds
print("Expected number of wrong beds: ", cnt_wrong_beds/runs)
print("Chance of oldest in own bed: ", 1 - cnt_last_wrong_bed/runs)

34

24 Help Us Find These Missing
Pieces

Riddler Express
The regular hexagon below has an area of 1. What is the area of the shaded region?

Solution
From the symmetry of the figure, we can see that the quadrilateral is 1

3
th the area of the

equilateral triangle in which it is embedded. The area of the equilateral triangle is 1
6
th of the

area of the hexagon. Therefore the area of the shaded quadrilateral is 1
6 ·

1
3 · 1 =

1
18 .

Riddler Riddler Classic
The largest circle below has a radius of 10, the medium circle has a radius of 5 and the small,
orange circle has a radius of 2. The orange circle crawls counterclockwise along the edge of
the largest circle until it meets the medium circle, at which point it crawls up along the edge
of the medium circle until it reaches the crest. What is the area of the shaded orange region
in the right image?

35

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Solution
The area of the shaded orange region has 3 parts.

The area of the small circle given by 4π.
The area of the semi annulus with internal radius 9 and outer radius 11 given by π

2 (12
2−82)

= 40π.
The area of the semi annulus with internal radius 4 and outer radius 6 given by π

2 (7
2 − 32)

= 20π.
Therefore the total area of the shaded region is 64π.

36

25 WhenWill The Arithmetic
Anarchists Attack?

Riddler Express
The year is 2000, and an arithmetical anarchist group has an idea. For the next 100 years, it
will vandalize a famous landmark whenever the year (in two-digit form, for example this year
is “18”) is the product of the month and date (i.e. month × date = year, in the MM/DD/YY
format).

A few questions about the lawless ensuing century: Howmany attacks will happen between
the beginning of 2001 and the end of 2099? What year will see the most vandalism? The
least? What will be the longest gap between attacks?

Solution
The year with the maximum number of attacks is 2024 with 7 attacks in total. There are a
number of years with no attacks at all. The total number of attacks in all years is 212. The
maximum gap in days between two attacks is 1096.

from datetime import date, timedelta
days_in_month = {

1:31,
2:28,
3:31,
4:30,
5:31,
6:30,
7:31,
8:31,
9:30,
10:31,
11:30,
12:31

}

attacks_by_year = {}
date_last_attack = date(2001,1,1)
max_gap = 0
for year in range(1, 100):

attacks_by_year[year] = 0
for month in days_in_month.keys():

days = days_in_month[month]
if year % 4 == 0 and month == 2:

days += 1
for day in range(1, days+1):

if month*day == year:
attacks_by_year[year] += 1
date_latest_attack = date(2000+year, month, day)
gap = date_latest_attack - date_last_attack
if gap.days >= max_gap:

37

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

max_gap = gap.days
date_last_attack = date_latest_attack

print("Max gap in days between attacks:", max_gap-1)
print("Attacks by year: ", attacks_by_year)
print("Total number of attacks: ", sum(attacks_by_year.values()))
print("Year of max attacks: ", max(attacks_by_year.items(),

key = lambda x: x[1]))

38

26 Can You Shuffle Numbers? Can
You Find All The World Cup
Results?

Riddler Classic
Imagine taking a number and moving its last digit to the front. For example, 1,234 would
become 4,123. What is the smallest positive integer such that when you do this, the result is
exactly double the original number? (For bonus points, solve this one without a computer.)

Solution
Let the last digit of our mystery number be a, and the rest of it be b. So the number we’re
searching for equals 10b+ a. Let b be an n-digit number. Then, moving the last digit to the
front gives a new number equal to 10n · a+ b = 2(10b+ a).

Simplifying that gives (10n − 2)a = 19b. For a and b to be integers, we need the left-hand
side to be divisible by 19, like the right-hand side is. In other words, we need it to be the case
that 10n = 2 mod 19.

From Little Fermat’s Theorem we have

1018 ≡ 1(mod 19)
=⇒ 2 · 1018 ≡ 2(mod 19)
=⇒ 20 · 1017 ≡ 2(mod 19)

=⇒ 1017 ≡ 2(mod 19)

Therefore the smallest n for which 10n ≡ 2(mod 19) is true is n = 17. So we have
[(1017 − 2)/19] · a = 5, 263, 157, 894, 736, 842 · a = b.

39

27 Can You Rescue The
Paratroopers?

Riddler Express
You have one token, and I have two tokens. Naturally, we both crave more tokens, so we play
a game of skill that unfolds over a number of rounds in which the winner of each round gets
to steal one token from the loser. The game itself ends when one of us is out of tokens — that
person loses. Suppose that you’re better than me at this game and that you win each round
two-thirds of the time and lose one-third of the time.

What is your probability of winning the game?

Solution
The probability of me winning the game is 57%.

from random import random

runs = 100000
cnt = 0
for _ in range(runs):

me, you = 1, 2
while(you != 0 and me != 0):

if random() <= 2/3:
you -= 1
me += 1

else:
you += 1
me -= 1

if you == 0:
cnt += 1

print(cnt/runs)

40

28 Will The Grasshopper Land In
Your Yard?

Riddler Express
You and your spouse each take two gummy vitamins every day. You share a single bottle
of 60 vitamins, which come in two flavors. You each prefer a different flavor, but it seems
childish to fish out two of each type (but not to take gummy vitamins). So you just take the
first four that fall out and then divide them up according to your preferences. For example, if
there are two of each flavor, you and your spouse get the vitamins you prefer, but if three of
your preferred flavor come out, you get two of the ones you like and your spouse will get one
of each.
The question is, on average, what percentage of the vitamins you take are the flavor you

prefer? (Assume that the bottle starts out with a 50-50 split between flavors, and that the four
selected each day are selected uniformly at random.)

Solution
The percentage of vitamins taken with the preferred flavour is 82%.

from random import sample

runs = 100000
total_pref_pct = 0
for _ in range(runs):

pills = set(range(60))
num_pref_pills = 0
for _ in range(15):

fish4 = sample(pills, 4)
pills -= set(fish4)
num_pref_pills += min(sum([1 if p % 2 == 0 else 0 for p in fish4]), 2)

total_pref_pct += num_pref_pills/30
print(total_pref_pct/runs)

41

29 The EternalQuestion: How
Much Do These Apricots Weigh?

Riddler Express
You loaded a drying shed containing 1,000 kilograms of apricots. They were 99 percent water.
After a day in the shed, they are now 98 percent water. How much do the apricots weigh
now?

Solution
One day 1, total weight of water = 990 kgs and non-water stuff = 10 kgs. One day 2, after the
evaporation of some water, let us say we are left with x kgs of water. We have,

x

x+ 10 = .98

=⇒ x = 490kgs

Therefore total weight of apricots on day 2 = x+ 10 = 500 kgs

Riddler Classic
I flip a coin. If it’s heads, I’ve won the game. If it’s tails, then I have to flip again, now needing
to get two heads in a row to win. If, on my second toss, I get another tails instead of a heads,
then I now need three heads in a row to win. If, instead, I get a heads on my second toss
(having flipped a tails on the first toss) then I still need to get a second heads to have two
heads in a row and win, but if my next toss is a tails (having thus tossed tails-heads-tails), I
now need to flip three heads in a row to win, and so on. The more tails you’ve tossed, the
more heads in a row you’ll need to win this game.

I may flip a potentially infinite number of times, always needing to flip a series of N heads
in a row to win, where N is T + 1 and T is the number of cumulative tails tossed. I win when I
flip the required number of heads in a row.
What are my chances of winning this game? (A computer program could calculate the

probability to any degree of precision, but is there a more elegant mathematical expression
for the probability of winning?)

42

30 What Are The Odds You’d
Already Have My Number?

My daughter recently noticed that the 10 digits of our old landline phone number are the
same digits as those in my wife’s cell phone. The first three digits match exactly because we
are in the same area code as before. And the last seven digits of my wife’s cell phone are
an exact scrambled version of the last seven digits of the old landline. By “exact scramble,” I
mean a string of numbers that is different than the original string of numbers but contains all
of the same digits with the exact same number of repetitions (so, for example, if “4” appears
exactly three times in the landline number, it also appears exactly three times in my wife’s
cell number).

My daughter asked, “What are the odds of that?”
To make this concrete, assume that landlines and cell numbers in my area code are assigned

randomly, such that a person is equally likely to get any of the 10,000,000 numbers between
and including 000-0000 to 999-9999. Given that assumption, what is the probability that
the last seven digits of the cell number are an exact scramble of the last seven digits of our
landline?

Solution
The probability that the last seven digits of the cell number are an exact scramble of the last
seven digits of our landline is 0.017 percent.

from itertools import product
from collections import defaultdict

phone_num_classes = defaultdict(int)
for p in product(*([range(10)]*7)):

phone_num_classes["".join(sorted(map(str, p)))] += 1

prob = 0
for _, cnt in phone_num_classes.items():

prob += (cnt/10000000)*((cnt-1)/9999999)
print(prob)

43

31 What Comes After 840? The
Answer May Surprise You

If N points are generated at random places on the perimeter of a circle, what is the probability
that you can pick a diameter such that all of those points are on only one side of the newly
halved circle?

Solution
Each of the N points determines a diameter of the circle. The probability of all the other
N− 1 points falling on one side of diameter determined by the first point is given by 1

2N−1 .
Therefore the probability of picking a diameter such that all of those points are on one side of
the newly halved circle is

∑N
i=1

1
2N−1 =

N
2N−1 .

Computational solution
from math import pi
from random import uniform
from collections import defaultdict

def total_angle(pts, n):
rl = pts[n:] + pts[:n]
nl = [d - pts[n] if d - pts[n] >= 0 else 2*pi + d - pts[n] for d in rl]
angles = [x - nl[i - 1] for i, x in enumerate(nl)][1:]
return sum(angles)

runs = 100000
N = 10
cnt_suc = defaultdict(int)
for n in range(3, N):

for _ in range(runs):
pts = [uniform(0, 2*pi) for _ in range(n)]
pts.sort()
min_angle = min([total_angle(pts, r) for r in range(n)])
if min_angle <= pi:

cnt_suc[n] += 1
print("%d random points, Estimated probability %f, \

Theoretical probability %f" % (n, cnt_suc[n]/runs, n/2**(n-1)))

44

32 How Low Can You Roll?

Riddler Express
Inspired by Catriona Shearer (if you don’t know who she is, seriously, check out her puzzles),
this week’s Riddler Express is a geometric conundrum:

Upside-down semicircle inscribed inside a right side-up semicircle. The smaller semicircle
is dark gray, while the larger one is light gray. The picture above shows two semicircles.
The lighter region (inside the larger semicircle but outside the smaller one) has an area of 7.
What’s the area of the darker region?

Solution
It is easy to see that the radius of the larger semicircle is

√
2 times the radius of the smaller

semi circle. We have
π(
√
2r)2
2 −

πr2

2 = 7 =⇒ πr2

2 = 7

where r is the radius of the smaller semi circle.
Therefore, the area of the darker region which is πr2

2 = 7.

Riddler Classic
You are given a fair, unweighted 10-sided die with sides labeled 0 to 9 and a sheet of paper
to record your score. (If the very notion of a fair 10-sided die bothers you, and you need to
know what sort of three-dimensional solid it is, then forget it — you have a random number
generator that gives you an integer value from 0 to 9 with equal probability. Your loss — the
die was a collector’s item.)
To start the game, you roll the die. Your current “score” is the number shown, divided by

10. For example, if you were to roll a 7, then your score would be 0.7. Then, you keep rolling
the die over and over again. Each time you roll, if the digit shown by the die is less than or
equal to the last digit of your score, then that roll becomes the new last digit of your score.
Otherwise you just go ahead and roll again. The game ends when you roll a zero.

45

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

For example, suppose you roll the following: 6, 2, 5, 1, 8, 1, 0. After your first roll, your
score would be 0.6, After the second, it’s 0.62. You ignore the third roll, since 5 is greater than
the current last digit, 2. After the fourth roll, your score is 0.621. You ignore the fifth roll,
since 8 is greater than the current last digit, 1. After the sixth roll, your score is 0.6211. And
after the seventh roll, the game is over — 0.6211 is your final score.

What will be your average final score in this game?

Solution
from random import choice

def roll():
return choice(range(10))

runs = 1000000
total_score = 0
for _ in range(runs):

rolls = []
while(True):

r = roll()
if r == 0:

break
elif not rolls:

rolls.append(r)
else:

if r <= rolls[-1]:
rolls.append(r)

score = sum([r*10**(-i-1) for i, r in enumerate(rolls)])
total_score += score

print(total_score/runs)

The average final score in the game is 0.47360.

46

33 HowMany Ways Can You Raid
The Candy Shop?

Riddler Express
Suppose I asked you to generate the biggest number you could using exactly three nines.
Specifically, you can add, subtract, multiply, divide, exponentiate or write them side-by-side.
Given this challenge, 9×9×9 is a pretty good start — it equals 729. Better yet is just writing
the nines side-by-side, giving you 999. The biggest number is 999 , which equals 9387420489.
If you were to write one digit of that number every second, it would take you more than a
decade to write the whole thing.
Now let’s up the challenge: What’s the biggest number you can generate using exactly

four threes?

Solution
The largest number that can be created by four threes is 3333 .

Riddler Classic
Now that Halloween has come and gone, your chances of getting free candy have similarly
disappeared. Desperate for sugar, you wander into the candy store, where three kinds of candy
are being sold: Almond Soys (yummy, sounds vegan!), Butterflingers and Candy Kernels.
You’d like to buy at least one candy and at most 100, but you don’t care precisely how

many you get of each or how many you get overall. So you might buy one of each, or you
might buy 30 Almond Soys, six Butterflingers and 64 Candy Kernels. As long as you have
somewhere between one and 100 candies, you’ll leave the store happy.
But as a member of Riddler Nation, you can’t help but wonder: How many distinct ways

are there for you to make your candy purchase?

Solution
from itertools import product

cnt = 0
for a,b,c in product(range(101), range(101), range(101)):

if a + b + c >= 1 and a+b+c <= 100:
cnt += 1

print(cnt)

The number of distinct ways to make the candy purchase is 176850.

47

34 WhoWants To Be A Riddler
Millionaire?

Riddler Express
You’ve made it to the $1 million question, but it’s a tough one. Out of the four choices, A, B,
C and D, you’re 70 percent sure the answer is B, and none of the remaining choices looks
more plausible than another. You decide to use your final lifeline, the 50 : 50, which leaves
you with two possible answers, one of them correct. Lo and behold, B remains an option!
How confident are you now that B is the correct answer?

Solution
Let B be the event that B is the correct answer. Let L be the event that the two options (one
of which is the correct answer) from lifeline contains B.

We have P[B] = .7 and we are interested in P[B|L].
From Bayes Theorem, we have

P[B|L] =
P[L|B]P[B]

P[L|B]P[B] + P[L|B ′]P[B ′]
=

1 · 0.7
1 · 0.7+ 1

3 · 0.3
=

7
8 = 0.875

Therefore the probability that B is the correct answer after the lifeline is 0.875.

Riddler Classic
The classic birthday problem asks about how many people need to be in a room together
before you have better-than-even odds that at least two of them have the same birthday.
Ignoring leap years, the answer is, paradoxically, only 23 people — fewer than you might
intuitively think.

But Joel noticed something interesting about a well-known group of 100 people: In the U.S.
Senate, three senators happen to share the same birthday of October 20: Kamala Harris, Brian
Schatz and Sheldon Whitehouse.

And so Joel has thrown a new wrinkle into the classic birthday problem. How many people
do you need to have better-than-even odds that at least three of them have the same birthday?
(Again, ignore leap years.)

48

35 Can You Track The Delirious
Ducks?

After a long night of frivolous quackery, two delirious ducks are having a difficult time
finding each other in their pond. The pond happens to contain a 3×3 grid of rocks.

Every minute, each duck randomly swims, independently of the other duck, from one rock
to a neighboring rock in the 3×3 grid — up, down, left or right, but not diagonally. So if a duck
is at the middle rock, it will next swim to one of the four side rocks with probability 1/4. From
a side rock, it will swim to one of the two adjacent corner rocks or back to the middle rock,
each with probability 1/3. And from a corner rock, it will swim to one of the two adjacent
side rocks with probability 1/2.
If the ducks both start at the middle rock, then on average, how long will it take until

they’re at the same rock again? (Of course, there’s a 1/4 chance that they’ll swim in the same
direction after the first minute, in which case it would only take one minute for them to be
at the same rock again. But it could take much longer, if they happen to keep missing each
other.)

Extra credit: What if there are three or more ducks? If they all start in the middle rock, on
average, how long will it take until they are all at the same rock again?

Solution
from random import randrange
from itertools import combinations

grid_size = 3

def nbrs(pos, grid_size=3):
i, j = pos
nbrs = []
for d in [-1, 1]:

if (i+d) >= 0 and (i+d) < grid_size:
nbrs.append((i+d, j))

if (j+d) >= 0 and (j+d) < grid_size:
nbrs.append((i, j+d))

return nbrs

neighbours = {(i, j): nbrs((i, j)) for i in range(grid_size)
for j in range(grid_size)}

def avgTimeToMeet(ducks_start, runs=100000):
total_t = 0
for _ in range(runs):

ducks = ducks_start
t = 0
while (True):

ducks_t = []

49

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

for duck in ducks:
duck_nbrs = neighbours[duck]
duck = duck_nbrs[randrange(len(duck_nbrs))]
ducks_t.append(duck)

ducks = ducks_t
t += 1
if all([d1 == d2 for d1, d2 in combinations(ducks, 2)]):

break
total_t += t

return total_t/runs

for ducks in [[(1, 1)]*2, [(1, 1)]*3]:
print("Average time for %d ducks to meet: %f" % (len(ducks), avgTimeToMeet(ducks)))

50

36 Can You Find A Number Worth
Its Weight In Letters?

In Jewish study, “Gematria” is an alphanumeric code where words are assigned numerical
values based on their letters. We can do the same in English, assigning 1 to the letter A, 2 to
the letter B, and so on, up to 26 for the letter Z. The value of a word is then the sum of the
values of its letters. For example, RIDDLER has an alphanumeric value of 70, since R + I + D +
D + L + E + R becomes 18 + 9 + 4 + 4 + 12 + 5 + 18 = 70.

But what about the values of different numbers themselves, spelled out as words? The num-
ber 1 (ONE) has an alphanumeric value of 15 + 14 + 5 = 34, and 2 (TWO) has an alphanumeric
value of 20 + 23 + 15 = 58. Both of these values are bigger than the numbers themselves.

Meanwhile, if we look at larger numbers, 1,417 (ONE THOUSAND FOUR HUNDRED
SEVENTEEN) has an alphanumeric value of 379, while 3,140,275 (THREE MILLION ONE
HUNDRED FORTY THOUSAND TWO HUNDRED SEVENTY FIVE) has an alphanumeric
value of 718. These values are much smaller than the numbers themselves.

If we consider all the whole numbers that are less than their alphanumeric value, what is
the largest of these numbers?

Solution
NUM_TO_NAME = {
0:"ZERO",
1:"ONE",
2:"TWO",
3:"THREE",
4:"FOUR",
5:"FIVE",
6:"SIX",
7:"SEVEN",
8:"EIGHT",
9:"NINE",
10:"TEN",
11:"ELEVEN",
12:"TWELVE",
13:"THIRTEEN",
14:"FOURTEEN",
15:"FIFTEEN",
16:"SIXTEEN",
17:"SEVENTEEN",
18:"EIGHTEEN",
19:"NINETEEN",
20:"TWENTY",
30:"THIRTY",
40:"FORTY",
50:"FIFTY",
60:"SIXTY",
70:"SEVENTY",
80:"EIGHTY",
90:"NINTY",
100:"HUNDRED"

51

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

}

LETTER_TO_NUM = {c:(ord(c) - ord('A')+1) for c in ("ABCDEFGHIJKLMNOPRQSTUVWXYZ")}
LETTER_TO_NUM[' '] = 0

def value(name):
print(name)
return sum([LETTER_TO_NUM[c] for c in name])

def num_to_name(num):
name = None
if num >=1 and num <=10:

name = NUM_TO_NAME[num]
elif num <= 100 and num % 10 == 0:

name = NUM_TO_NAME[num]
elif num < 100:

name = NUM_TO_NAME[num - (num % 10)] + " " + NUM_TO_NAME[num % 10]
elif num < 1000:

name = NUM_TO_NAME[num // 100] + " HUNDRED " + num_to_name(num % 100)
return name

print(max(n for n in range(1,500) if value(num_to_name(n))>n))

52

37 Can You Solve The Vexing
Vexillology?

The New York Times recently launched some new word puzzles, one of which is Spelling
Bee. In this game, seven letters are arranged in a honeycomb lattice, with one letter in the
center. Here’s the lattice from December 24, 2019:

Spelling Bee screenshot, with the required letter G, and the additional letters L, A, P, X, M
and E. The goal is to identify as many words that meet the following criteria:
The word must be at least four letters long. The word must include the central letter.

The word cannot include any letter beyond the seven given letters. Note that letters can
be repeated. For example, the words GAME and AMALGAM are both acceptable words.
Four-letter words are worth 1 point each, while five-letter words are worth 5 points, six-letter
words are worth 6 points, seven-letter words are worth 7 points, etc. Words that use all of
the seven letters in the honeycomb are known as “pangrams” and earn 7 bonus points (in
addition to the points for the length of the word). So in the above example, MEGAPLEX is
worth 15 points.

Which seven-letter honeycomb results in the highest possible game score? To be a valid
choice of seven letters, no letter can be repeated, it must not contain the letter S (that would
be too easy) and there must be at least one pangram.

For consistency, please use this word list to check your game score.2

Solution
import datetime
from collections import defaultdict
from itertools import combinations
import urllib.request

Load all dictionary words from file
DICT_URL = "https://norvig.com/ngrams/enable1.txt"

def load_dictionary(url):
response = urllib.request.urlopen(url)
return [l.decode('utf-8').strip() for l in response.readlines()]

ALL_WORDS = load_dictionary(DICT_URL)

print(ALL_WORDS[0:10])

"""
Calculate word score based on the rules below
Four-letter words are worth 1 point each,
while five-letter words are worth 5 points,
six-letter words are worth 6 points,
seven-letter words are worth 7 points, etc.
Words that use all of the seven letters in the honeycomb are known as “pangrams” and earn 7 bonus points
(in addition to the points for the length of the word)
"""

53

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

def word_score(word):
bonus = 7 if len(set(word)) == 7 else 0
return 1 if len(word) == 4 else len(word) + bonus

"""
Valid HoneyCombPuzzle words as per the rules below
The word must be at least four letters long.
The word must include the central letter.
The word cannot include any letter beyond the seven given letters.
"""

HCP_WORDS = [w for w in ALL_WORDS if len(w) >= 4 and ("s" not in w)
and len(set(w)) <= 7]

Word scores for all HCP WORD
HCP_WORD_SCORES = {w: word_score(w) for w in HCP_WORDS}

The set of HPC Words for a set of letters
HCP_WORDSETS = defaultdict(list)
for w in HCP_WORDS:

HCP_WORDSETS[frozenset(w)].append(w)

"""
Algorithm for calculating the score obtainable in a HoneyCombPuzzle
1. Find all subsets using the 6 letters surrounding the central letter (this results in 64 subsets for each puzzle)
2. Add the central letter to each of the subsets (as central character should be present in each word formed)
3. For each subset, identify the list of HPC words that can be formed using letters of the subset
4. Taking the union of all the words that can be formed by each subset, gives us all the HPC words that can be formed using the letters of the puzzle
5. Sum the scores of all the HPC words for all the subsets to get the puzzle score
"""

def letter_subsets(hc):
center, surrounding = hc
subsets = []
for r in range(1, 7):

for comb_r in combinations(surrounding, r):
subset = frozenset(list(comb_r)+[center])
subsets.append(subset)

return subsets

def score(hc):
return sum([HCP_WORD_SCORES[w] for subset in letter_subsets(hc)

for w in HCP_WORDSETS[subset]])

def solution(hc):
return [w for subset in letter_subsets(hc)

for w in HCP_WORDSETS[subset]]

def print_solution(hc):
print("HoneyCombPuzzle:", hc)
words = solution(hc)
print("Number of words:", len(words))

54

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

for w in words:
print(w, HCP_WORD_SCORES[w])

sc = score(hc)
print("Total score:", sc)

"""
Which seven-letter honeycomb results in the highest possible game score?
To be a valid choice of seven letters, no letter can be repeated, it must not contain the letter S (that would be too easy)
and there must be at least one pangram.

Algorithm for identifying all valid sets of seven letter honeycombs
Out of all valid HPC words, identify words which are formed with seven different letters (because the seven letters should form atleast one pangram)
From each word identify the set of 7 distinct letters
Each set of 7 distinct letters gives rise to 7 distinct honeycombs
Identify the honeycomb with the largest score
"""

Words that use all of the seven letters in the honeycomb are known as “pangrams”

def best():
def valid_honeycombs():

pangram_sets = [set(w) for w in HCP_WORDS if len(set(w)) == 7]
return [(c, ls.difference(c)) for ls in pangram_sets for c in ls]

return max([(score(hc), hc) for hc in valid_honeycombs()])

if __name__ == "__main__":
print_solution(('g', 'ameplx'))
print("Start:", datetime.datetime.now())
print("The Best HoneyCombPuzzle Score: %d, Puzzle: %s" % best())
print("End:", datetime.datetime.now())

55

38 Can You Find A Matching Pair
Of Socks?

I have 10 pairs of socks in a drawer. Each pair is distinct from another and consists of two
matching socks. Alas, I’m negligent when it comes to folding my laundry, and so the socks
are not folded into pairs. This morning, fumbling around in the dark, I pull the socks out of
the drawer, randomly and one at a time, until I have a matching pair of socks among the ones
I’ve removed from the drawer.

On average, how many socks will I pull out of the drawer in order to get my first matching
pair?
(Note: This is different from asking how many socks I must pull out of the drawer to

guarantee that I have a matching pair. The answer to that question, by the pigeonhole
principle, is 11 socks. This question is instead asking about the average.)
Extra credit: Instead of 10 pairs of socks, what if I have some large number N pairs of

socks?

Solution
from random import sample

num_sock_pairs = 30
runs = 10000
socks = list(range(num_sock_pairs))*2

total_num_socks = 0
for _ in range(runs):

samp = sample(socks, num_sock_pairs+1)
start_pos, end_pos = {}, {}
for i, sock in enumerate(samp):

if sock not in start_pos.keys():
start_pos[sock] = i

else:
end_pos[sock] = i

if sock in end_pos.keys():
break

total_num_socks += end_pos[sock]+1
print("Average number of socks ", total_num_socks/runs)

56

39 Can You Get A Haircut Already?
At your local barbershop, there are always four barbers working simultaneously. Each

haircut takes exactly 15 minutes, and there’s almost always one or more customers waiting
their turn on a first-come, first-served basis.
Being a regular, you prefer to get your hair cut by the owner, Tiffany. If one of the other

three chairs opens up, and it’s your turn, you’ll say, “No thanks, I’m waiting for Tiffany.” The
person behind you in line will then be offered the open chair, and you’ll remain at the front
of the line until Tiffany is available.
Unfortunately, you’re not alone in requesting Tiffany — a quarter of the other customers

will hold out for Tiffany, while no one will hold out for any of the other barbers.
One Friday morning, you arrive at the barber shop to see that all four barbers are cutting

hair, and there is one customer waiting. You have no idea how far along any of the barbers is
in their haircuts, and you don’t know whether or not the customer in line will hold out for
Tiffany.

What is the expected wait time for getting a haircut from Tiffany?

Solution
Let T be the random variable of the remaining time for haircut being done by Tiffany.

Let Bi be the random variable of the remaining time for haircut being done by Barber i, for
i = 1, 2, 3.
Let CT be the indicator random variable which takes the value 1 if the waiting customer

holds out for Tiffany and 0 otherwise.
We have,

T ∼ U(0, 15)
Bi ∼ U(0, 15), i = 1, 2, 3

P[CT = 1] = 1
4 , P[CT = 0] = 3

4

Let Y be the random variable of the waiting time for Tiffany when there is one customer
waiting.

We have,

Y =

15+ T CT = 1
15+ T CT = 0, T < min(B1,B2,B3)

T CT = 0, T ⩾ min(B1,B2,B3)

(39.1)

The expected wait time for getting a haircut from Tiffany is given by

E[Y] = P[CT = 1] ·E[Y|CT = 1] +P[CT = 0] ·E[Y|CT = 0] = 1
4(15+E[T])+

3
4E[Y|CT = 0]

(39.2)
As T ∼ U(0, 15),

E[T] =
0+ 15

2 = 7.5 (39.3)

To calculate E[Y|CT = 0], we need the distribution function of B = min(B1,B2,B3).

57

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

By definition,

FB(x) = P[B ⩽ x] = 1− P[B > x] = 1− P[min(B1,B2,B3) > x] (39.4)

From 39.1 and 39.4 we get,

E[Y|T ,CT = 0] = (15+ T)(1− FB(T)) + T · FB(T) = 15(1− FB(T)) + T (39.5)

Using Symmetry to calculate E[Y|CT = 0]
An elegant way of calculating E[Y|CT = 0] from 39.5 without deriving FB explicitly is as
follows,

E[Y|CT = 0] = E[E[Y|T ,CT = 0]] = E[15(1− FB(T))] +E[T] = 15 · 14 + 7.5 = 11.25 (39.6)

The quantity E[1 − FB(T)] can be interpreted as the average probability of T being the
minimum of T ,B1,B2 and B3, which by symmetry is 1

4 .

Using the distribution function FB to calculate E[Y|CT = 0]
Derivation of FB

To derive FB we need to first calculate P[min(B1,B2,B3) > x].
Of course,min(B1,B2,B3) > x exactly when Bi > x for i = 1, 2 and 3.
Since these variables are i.i.d., we have P[min(B1,B2,B3) > x] = P[B1 > x] · P[B2 >

x] · P[B3 > x] = P(B1 > x)3.
As the Bi are uniformly distributed on (0, 15), this yields

FB(x) =

 1−
(15−x

15

)3
x ∈ (0, 15)

0 x < 0
1 y > 15

(39.7)

From 39.7 and 39.5 we get,

E[Y|T ,CT = 0] = 15
(
15− T

15

)3

+ T (39.8)

From 39.8 we get,

E[Y|CT = 0] =
∫ 15

0
fT (t)

(
15
(
15− t

15

)3

+ t

)
dt =

∫ 15

0

1
15

(
15
(
15− t

15

)3

+ t

)
dt = 11.25

(39.9)
where fT (t) = 1

15 is the density function of T .

Calculating E[Y]
From 39.2, 39.3 and 39.6 (or 39.9) and we get,

E[Y] =
1
4(15+ E[T]) +

3
4E[Y|CT = 0] = 1

4 · 22.5+ 3
4 · 11.25 = 14.0625

Therefore the expected wait time for getting a haircut from Tiffany is 14.0625 mins.

58

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Computational Solution
from random import random, uniform

runs = 1000000
total_wait_time = 0
for _ in range(runs):

t, b1, b2, b3 = [uniform(0, 15) for _ in range(4)]
if random() <= 0.25:

wait_time = 15 + t
else:

if t < min(b1, b2, b3):
wait_time = 15 + t

else:
wait_time = t

total_wait_time += wait_time
print("Average wait time: ", total_wait_time/runs)

59

40 How Good Are You At Guess
Who?

Riddler Express
A local cafe has board games on a shelf, designed to keep kids (and some adults) entertained
while they wait on their food. One of the games is a tic-tac-toe board, which comes with nine
pieces that you and your opponent can place: five Xs and four Os.

When I took my two-year-old with me, he wasn’t particularly interested in the game itself,
but rather in the placement of the pieces.
If he randomly places all nine pieces in the nine slots on the tic-tac-toe board (with one

piece in each slot), what’s the probability that X wins? That is, what’s the probability that
there will be at least one occurrence of three Xs in a row at the same time there are no
occurrences of three Os in a row?

Solution
import altair as alt
from itertools import combinations
alt.renderers.enable('default')

def win(p, piece):
rows_cols_diags, diag1, diag2 = [], [], []
for i in range(3):

rows_cols_diags.append([e[1] for e in filter(lambda x: x[0][0]==i, p)])
rows_cols_diags.append([e[1] for e in filter(lambda x: x[0][1]==i, p)])
diag1.append(next(filter(lambda x: x[0][0]==i and x[0][1]==i, p))[1])
diag2.append(next(filter(lambda x: x[0][0]==i and x[0][1]==2-i, p))[1])

rows_cols_diags.extend([diag1, diag2])
return any(map(lambda x: x == [piece]*3, rows_cols_diags))

num_x = 5
piece_x, piece_o = "X", "O"
squares = set([(i,j) for i in range(3) for j in range(3)])
positions = []
for i, comb in enumerate(combinations(squares, num_x)):

p = [(c, piece_x) for c in comb] + [(c, piece_o) for c in squares - set(comb)]
if win(p, piece_x) and not win(p, piece_o):

positions.append((p, "win"))
else:

positions.append((p, "loss"))
print("Number of winning positions:", len(list(filter(lambda x: x[1]=="win", positions))))

def pos_viz(pos):
position, win_loss = pos
if win_loss == "win":

pos = alt.Data(values=[{'x':x, 'y':y, 'p':p, 'col':"green" if p==piece_x else "red"}
for (x,y),p in position])

else:
pos = alt.Data(values=[{'x':x, 'y':y, 'p':p, 'col':"grey"} for (x,y),p in position])

grid = alt.Chart(pos).mark_rect(stroke="white", strokeWidth=1, opacity=0.6).encode(

60

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

x = alt.X('x:O',axis=None),
y = alt.Y('y:O',axis=None),
color = alt.Color('col:N', scale=None),

)
pieces = grid.mark_text().encode(

text = 'p:N',
color = alt.value('black')

)
return grid + pieces

group = lambda flat, size: [flat[i:i+size] for i in range(0, len(flat), size)]

chart = alt.vconcat()
for row in group(sorted(positions, key = lambda k:k[1], reverse=True), 9):

chart_row = alt.hconcat()
for pos in row:

chart_row |= pos_viz(pos)
chart &= chart_row

chart

The probability that ’X’ wins is 0.4924.
Here are all the winning positions:

Riddler Classic
In the game of “Guess Who,” each player first randomly (and independently of their opponent)
selects one of N character tiles. While it’s unlikely, both players can choose the same character.
Each of the N characters is distinct in appearance — for example, characters have different
skin tones, hair color, hair length and accessories like hats or glasses.

Each player also has access to a board with images of all N characters. The players alternate
taking turns, and during each turn a player has two options:
Make a specific guess as to their opponent’s selected character. If correct, the player who

made the guess immediately wins. Otherwise, that player immediately loses. Ask a yes-or-no
question about their opponent’s chosen character, in order to eliminate some of the candidates.
Importantly, if only one possible character is left after the question, the player must still wait
until their next turn to officially guess that character. Assume both players are highly skilled
at choosing yes-or-no questions, so that they can always craft a question to rule out any
desired number of candidates. Also, both are playing to maximize their own probability of
winning.

Let’s keep things (relatively) simple, and suppose that N = 4. How likely is it that the player
who goes first will win?

Extra credit: If N is instead 24 (the number of characters in the original “Guess Who” game),
now how likely is it that the player who goes first will win?

Extra extra credit: If N is instead 14, now how likely is it that the player who goes first will
win?

61

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

62

41 Can You Time The Stoplight Just
Right?

You and I find ourselves indoors one rainy afternoon, with nothing but some loose change
in the couch cushions to entertain us. We decide that we’ll take turns flipping a coin, and that
the winner will be whoever flips 10 heads first. The winner gets to keep all the change in the
couch! Predictably, an enormous argument erupts: We both want to be the one to go first.

What is the first flipper’s advantage? In other words, what percentage of the time does the
first flipper win this game?

Solution
from random import random

def flip():
return 1 if random() > 0.5 else 0

runs = 100000

nfw = 0
for _ in range(runs):

nah, nbh = 0, 0
while(True):

if flip():
nah += 1

if nah == 10:
nfw += 1
break

if flip():
nbh += 1

if nbh == 10:
break

print("Percentage of first person wins: ", nfw/runs)

63

42 Same number on all the dies
You start with a fair 6-sided die and roll it six times, recording the results of each roll. You

then write these numbers on the six faces of another, unlabeled fair die. For example, if your
six rolls were 3, 5, 3, 6, 1 and 2, then your second die wouldn’t have a 4 on it; instead, it would
have two 3s.

Next, you roll this second die six times. You take those six numbers and write them on the
faces of yet another fair die, and you continue this process of generating a new die from the
previous one.
Eventually, you’ll have a die with the same number on all six faces. What is the average

number of rolls it will take to reach this state?
Extra credit: Instead of a standard 6-sided die, suppose you have an N-sided die, whose

sides are numbered from 1 to N. What is the average number of rolls it would take until all N
sides show the same number?

Solution
from collections import Counter
from random import choices
import altair as alt
import pandas as pd

alt.renderers.enable('default')

N = 20
runs = 10000
exp_number = []
for n in range(6, N):

total_succ_cnt = 0
for _ in range(runs):

num_count = Counter(range(n))
succ_cnt = 0
while(True):

num_count = Counter(choices(list(num_count.keys()),
weights=list(num_count.values()),
k=n))

succ_cnt += 1
if n in num_count.values():

break
total_succ_cnt += succ_cnt

exp_number.append({'N': n, 'Expected Number of Rolls': total_succ_cnt/runs})

alt.Chart(pd.DataFrame(exp_number)).mark_line().encode(
x='N:Q',
y='Expected Number of Rolls:Q'

)

64

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Here is the graph of number of faces on the dice Vs Expected number of rolls to get same
number on all dies dies

65

43 Can You Tell When The Snow
Started?

One morning, it starts snowing. The snow falls at a constant rate, and it continues the rest
of the day.

At noon, a snowplow begins to clear the road. The more snow there is on the ground, the
slower the plow moves. In fact, the plow’s speed is inversely proportional to the depth of the
snow — if you were to double the amount of snow on the ground, the plow would move half
as fast.

In its first hour on the road, the plow travels 2 miles. In the second hour, the plow travels
only 1 mile.

When did it start snowing?

Solution
We have

dx

dt
=

k

rt
(43.1)

where k is a constant and r is the constant rate of snow fall.
Integrating the above equation we have the following equations for the distances covered

in the first and second hours by the snowplow

2 =
∫ ts+1

ts

k

rt
dt =

k

r
ln

(
ts + 1
ts

)
(43.2)

1 =
∫ ts+2

ts+1

k

rt
dt =

k

r
ln

(
ts + 2
ts + 1

)
(43.3)

where ts is the time in hrs the snowplow starts after the snow fall begins.
From the above we have,

(
t1 + 2
ts + 1

)2

=
ts + 1
ts

=⇒ ts = 0∨ t2s + ts − 1 = 0 (43.4)

Ignoring the trivial and the implausible solutions, we have,

ts =
−1+

√
5

2 =
1
ϕ

(43.5)

As the snowplow starts at noon, the snow fall must have started at 12 : 00− tshrs i.e. at
11:23 am.

66

44 Can you flip the magic coin?
I have a coin with a sun on the front and the mooon on the back. I claim that on most days

it’s a fair coin, with a 50 percent chance of landing on either the sun or the moon. But once a
year, on the summer solstice, the coin absorbs the sun’s rays and exhibits a strange power:it
always comes up the opposite side as the previous flip. Of course, you are skeptical of my
claim. You figure that there’s a 1 percent chance that the coin is magical and a 99 percent
chance that it’s just an ordinary fair coin. You then ask me to "prove" that the coin is magical
by flipping it some number of times. How many successfully alternating coin flips it will
take for you to think there’s a 99 percent chance the coin is magical (or, more likely, that I’ve
rigged it in some ways so it always alternates)?

Solution
This is a classic application of Bayes Theorem. Let M be the even that the coin is magical.
The probability that the coin is magical is given by P[M] = 0.01. The probability that the coin
is not magical is given by P[Mc] = 0.99. Let n be the number of alternating flips required for
you to think that the coin is magical with a probability of 99 percent. Let An be the event
of getting n alternating flips on tossing the coin n times. This means that the conditional
probability of the coin being considered by you as magical given n alternating flips is given
P[M|An] ⩾ 0.99. For a magical coin the probability of alternate flips is always 1, so we have
P[An|M] = 1. For a normal coin, the probability of alternate flips is given by P[An|M

c] = 2
2n

because the n alternate flips can start with a head or a tail. Therefore, from Bayes theorem,
we have

0.99 ⩽ P[M|An] =
P[An|M] · P[M]

P[An|M] · P[M] + P[An|Mc] · P[Mc]

=
1 · 0.01

1 · 0.01+ 2
2n · 0.99

We see that we need n ⩾ 15 alternating flips so that we can be 99 percent confident that
the coin is magical.

67

45 Centered Pentagonal Number
The 50 stars on the American flag are arranged in such a way that they form two rectangles.

The larger rectangle is 5 stars wide, 6 stars long; the smaller rectangle is embedded inside the
larger and is 4 stars wide, 5 stars long. This square-like pattern of stars is possible because
the number of states (50) is twice a square number (25).

Now that the House of Representatives has passed legislation that would make the District
of Columbia the fifty-first US state — and renamed Washington, Douglass Commonwealth, in
honor of Frederick Douglass — a natural question is how to aesthetically arrange 51 stars on
the flag.
One pleasing design has a star in the middle, surrounded by concentric pentagons of

increasing side length, as shown below. The innermost pentagon has five stars, and subsequent
pentagons are made up of 10, 15 and 20 stars. All told, that’s 51 stars.

It just so happens that when N equals 50, N is twice a square and N + 1 is a centered
pentagonal number. After 50, what is the next integer N with these properties?

68

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Solution
We are looking for an N that satisifies the following:

N+ 1 = 5p2 + 5p+ 2
2

N = 2q2

for some integers p and q.
From the above we have 5(2p+ 1)2 − 5 = 16q2 or x2 − 80q2 = 1 where x = 2p+ 1 and

q = 5y.
The equation x2 − 80y2 = 1 is a Pell’s equation.
If (x,y) = (u, v) is a solution of the above equation, a whole family of solutions can be

found by taking each side to the nth power ,

x2 − 80y2 = (u2 − 80v2)n = 1.

Factoring gives,

x+
√
80y = (u+

√
80v)nx−

√
80y = (u−

√
80v)n

which gives the whole family of solutions

x =
(u+ v

√
80)n + (u− v

√
80)n

2 y =
(u+ v

√
80)n − (u− v

√
80)n

2
√
80

It is easy to see that (u, v) = (9, 1) is a solution to x2 − 80y2 = 1.
For n = 1, we have x = 9, therefore p = 4 and N = 50. For n = 2, we have x = 161,

therefore p = 80 and N = 16200.

Brute force computational solution
from math import sqrt

for p in range(1, 1000):
t = (5*p**2 + 5*p)/4
if sqrt(t).is_integer():

print("N = ", int(2*t))

69

46 Breaking a slide rule into four
pieces

The Riddler Manufacturing Company makes all sorts of mathematical tools: compasses,
protractors, slide rules — you name it!
Recently, there was an issue with the production of foot-long rulers. It seems that each

ruler was accidentally sliced at three random points along the ruler, resulting in four pieces.
Looking on the bright side, that means there are now four times as many rulers — they just
happen to have different lengths.

On average, how long are the pieces that contain the 6-inch mark?

Solution

Order Statistics
Let X1,X2, · · · ,Xn be a random sample of size n from a continuous distribution with distribu-
tion function F(x). We order the random sample in increasing order and obtain Y1, Y2, · · · , Yn.
In other words, we have:

Y1= the smallest of X1,X2, · · · ,Xn Y2= the second smallest of X1,X2, · · · ,Xn

·
·
·

Yn = the largest of X1,X2, · · · ,Xn

We set Ymin = Y1 and Ymax = Yn. The order statistic Yi is called the ith order statistic.
Since we are working with a continuous distribution, we assume that the probability of two
sample items being equal is zero. Thus we can assume that Y1 < Y2 < · · · < Yn. That is, the
probability of a tie is zero among the order statistics.

The Distribution Functions of the Order Statistics
The distribution function of Yi is an upper tail of a binomial distribution. If the event Yi ⩽ y

occurs, then there are at least imanyXj in the sample that are less than or equal to y. Consider
the event that X ⩽ y as a success and F(y) = P[X ⩽ y] as the probability of success. Then
the drawing of each sample item becomes a Bernoulli trial (a success or a failure). We are
interested in the probability of having at least i many successes. Thus the following is the
distribution function of Yi:

FYi
(y) = P[Yi ⩽ y] =

n∑
k=i

(
n

k

)
F(y)k[1− F(y)]n−k

70

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

The Probability Density Functions of the Order Statistics
The probability density function of Yi is given by:

fYi
(y) =

n!
(i− 1)!(n− i)! F(y)

i−1 [1− F(y)]n−ifX(y)

The details of the derivation can be found here - [Order Statistics](https://probabilityandstats.wordpress.com/2010/02/20/the-
distributions-of-the-order-statistics/).

The Order Statistics of the Uniform Distribution
When Xi ∼ U[0, 1], we have F(y) = y and fX(y) = 1, therefore

FYi
(y) = P[Yi ⩽ y] =

n∑
k=i

(
n

k

)
yk(1− y)n−k

fYi
(y) =

n!
(i− 1)!(n− i)! y

i−1 (1− y)n−i

E[Yi] =

∫ 1

0
fYi

(y)ydy

=

∫ 1

0
i

(
n

i

)
yi(1− y)n−idy =

i

n+ 1

Putting it all together
Let LY1,LY2 and LYn be the n places where the ruler has been sliced where L is the length of
the ruler in inches, Xi ∼ U[0, 1] and Yi are the order statistics of the Uniform distribution.

When the markm lies between LYk and LYk+1, we have

P[Yk ⩽ a ⩽ Yk+1] = 1− (P[Yk+1 ⩽ a] + P[Yk ⩾ a])

= 1−
(
FYk+1(a) + 1− FYk

(a)
)

= FYk
(a) − FYk+1(a)

=

(
n

k

)
ak(1− a)n−k

E[LYk+1 − LYk|Yk ⩽ a ⩽ Yk+1] =
m

k+ 1 +
L−m

n− k+ 1
where a = m

L
.

The average length of the piece which has them inch mark is given by

71

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

(1− FY1(a))(m+
L−m

n+ 1) + (FY1(a) − FY2(a))(
m

2 +
L−m

n
)+

· · ·+ FYn
(a)(

m

n+ 1 + L−m)

= (1− a)n(m+
L−m

n+ 1) +
(
n

1

)
a(1− a)n−1(

m

2 +
L−m

n
)+

· · ·+ an(
m

n+ 1 + L−m)

= m

∫ 1

0
(ax+ 1− a)ndx+ (L−m)

∫ 1

0
(a+ (1− a)x)ndx

=
m

a(n+ 1) −
m(1− a)n+1

a(n+ 1) +
m

a(n+ 1) −
(L−m)an+1

(1− a)(n+ 1)

=
L

n+ 1
(
2− (1− a)n+1 − an+1)

In the given problem, L = 12, m = 6, n = 3 and a = 6
12 =

1
2 , therefore the average length

of the piece we are interested in is given by

12
3+ 1

(
2− 1

23+1 −
1

23+1

)
= 6− 3

8 = 5.625

Computational solution
from random import uniform

l = 0
u = 12
m = 6
n = 4
runs = 500000

tl = 0
for _ in range(runs):

endpoints = [l] + sorted([uniform(l, u) for _ in range(n-1)]) + [u]
for i, ep in enumerate(endpoints[:-1]):

if ep < m < endpoints[i+1]:
tl += (endpoints[i+1] - ep)

print("Avg length of the piece that contains the mark:", tl/runs)

72

47 Can You Reach The Summit
First?

Riddler Express
Once a week, folks from Blacksburg, Greensboro, and Silver Spring get together for a game
of pickup basketball. Every week, anywhere from one to five individuals will show up from
each town, with each outcome equally likely.
Using all the players that show up, they want to create exactly two teams of equal size.

Being a prideful bunch, everyone wears a jersey that matches the color mentioned in the
name of their city. However, since it might create confusion to have one jersey playing for
both sides, they agree that the residents of two towns will combine forces to play against the
third town’s residents.

What is the probability that, on any given week, it’s possible to form two equal teams with
everyone playing, where two towns are pitted against the third?
Extra credit: Suppose that, instead of anywhere from one to five individuals per town,

anywhere from one to N individuals show up per town. Now what’s the probability that
there will be two equal teams?

Solution
Let b,g and s be the number of people from Blacksburg, Greensboro and Silver spring on a
given week.
The total number of 3 − tuples of the form (b,g, s) where 1 ⩽ b ⩽ N,1 ⩽ g ⩽ N and

1 ⩽ s ⩽ N is N3.
When equal teams can be formed from b,g and s, we have b + g = s or b + s = g or

s+ g = b.
The equation b+ g = n has the following solutions:

1+ (n− 1)2+ (n− 2)...(n− 1) + 1

Therefore, the number of solutions of the equation is n− 1.
The total number of solutions to the set of equations b+ g = s or b+ s = g or s+ g = b

where 1 ⩽ b ⩽ N,1 ⩽ g ⩽ N and 1 ⩽ s ⩽ N is given by 3(1+2+· · ·+N−1) = 3N(N−1)/2.
The probability of forming two equal teams satisfying the given criteria is 3N(N−1)/2

N3 .

Computational solution in Python
from itertools import product
n = 5

m = 0
for b,g,s in product(*[range(1, n+1)]*3):

if b+g==s or b+s==g or s+g==b:
m += 1

print(m, m/n**3)

73

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Riddler Classic
For every mountain in the Tour de FiveThirtyEight, the first few riders to reach the summit
are awarded points. The rider with the most such points at the end of the Tour is named
“King of the Mountains” and gets to wear a special polka dot jersey.

At the moment, you are racing against three other riders up one of the mountains. The
first rider over the top gets 5 points, the second rider gets 3, the third rider gets 2, and the
fourth rider gets 1.

All four of you are of equal ability — that is, under normal circumstances, you all have an
equal chance of reaching the summit first. But there’s a catch — two of your competitors are
on the same team. Teammates are able to work together, drafting and setting a tempo up the
mountain. Whichever teammate happens to be slower on the climb will get a boost from their
faster teammate, and the two of them will both reach the summit at the faster teammate’s
time.

As a lone rider, the odds may be stacked against you. In your quest for the polka dot jersey,
how many points can you expect to win on this mountain, on average?

Solution
from more_itertools import locate

cnt,tp = 0, 0
for p in distinct_permutations('ABCC'):

cnt += 1
pos_A = list(locate(p, lambda x: x == 'A'))[0]
pos1_C, pos2_C = list(locate(p, lambda x: x == 'C'))
if pos_A == 0:

tp += 5
if pos_A == 3:

tp += 1
if pos1_C < pos_A < pos2_C:

if pos_A == 1:
tp += 2

if pos_A == 2:
tp += 1

else:
if pos_A == 1:

tp += 3
if pos_A == 2:

tp += 2

print(tp/cnt)

74

48 Can You Cut The Square . . . Into
More Squares?

Robin of Foxley has entered the FiveThirtyEight archery tournament. Her aim is excellent
(relatively speaking), as she is guaranteed to hit the circular target, which has no subdivisions
— it’s just one big circle. However, her arrows are equally likely to hit each location within
the target.

Her true love, Marian, has issued a challenge. Robin must fire as many arrows as she can,
such that each arrow is closer to the center of the target than the previous arrow. For example,
if Robin fires three arrows, each closer to the center than the previous, but the fourth arrow
is farther than the third, then she is done with the challenge and her score is four.

On average, what score can Robin expect to achieve in this archery challenge?
Extra credit: Marian now uses a target with 10 concentric circles, whose radii are 1, 2, 3,

etc., all the way up to 10 — the radius of the entire target. This time, Robin must fire as
many arrows as she can, such that each arrow falls within a smaller concentric circle than
the previous arrow. On average, what score can Robin expect to achieve in this version of the
archery challenge?

Solution
from random import random

runs = 1000000

def avg_score_challenge1():
total_cnt = 0
for _ in range(runs):

prev_pos = random()
cnt = 1
while(True):

cur_pos=random()
cnt += 1
if cur_pos < prev_pos:

prev_pos = cur_pos
else:

break
total_cnt += cnt

return total_cnt/runs

def avg_score_challenge2():
n = 10
interval_to_circle = [(i,i**2/n**2, (i+1)**2/n**2) for i in range(n)]
def number_to_circle(p):

for i,s,e in interval_to_circle:
if s < p and p < e:

return i

total_cnt = 0
for _ in range(runs):

prev_pos = number_to_circle(random())

75

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

cnt = 1
while(True):

cur_pos = number_to_circle(random())
cnt += 1
if cur_pos < prev_pos:

prev_pos = cur_pos
else:

break
total_cnt += cnt

return total_cnt/runs

print(avg_score_challenge1(), exp(1))
print(avg_score_challenge2())

76

49 Can You Hunt For The
Mysterious Numbers?

Riddler Express
You’re a contestant on the hit new game show, “You Bet Your Fife.” On the show, a random
real number (i.e., decimals are allowed) is chosen between 0 and 100. Your job is to guess a
value that is less than this randomly chosen number. Your reward for winning is a novelty
fife that is valued precisely at your guess. For example, if the number is 75 and you guess 5,
you’d win a $5 fife, but if you’d guessed 60, you’d win a $60 fife. Meanwhile, a guess of 80
would win you nothing. What number should you guess to maximize the average value of
your fifing winnings?

Solution
Let X ∼ U[0, 100] be the random variable representing the random real number that is chosen.
Let Y be the random variable representing the fifing winnings.

We have

Y =

{
g, g < X

0, g ⩾ X

where g is the number you should guess.
Also, P[Y = g] = P[X > g] = 100−g

100 .
Therefore, E[Y] = g · P[Y = g] = g(100−g)

100 .
The expectation takes the maximum value when g = 100− g = 50 and maximum value of

the expectation is 25.

Riddler Classic
There are eight three-digit numbers — each belongs in a row of the table below, with one digit
per cell. The products of the three digits of each number are shown in the rightmost column.
Meanwhile, the products of the digits in the hundreds, tens, and ones places, respectively, are
shown in the bottom row.
Table for eight three-digit numbers. The products of the three digits in each number are,

respectively, 294, 216, 135, 98, 112, 84, 245 and 40. The product of the hundreds digits is
8, 890, 560. The product of the tens digit is 156, 800. The product of the ones digit is 55, 5664.

Can you find all eight three-digit numbers and complete the table?

Solution
from z3 import *

class MysteriousNumbersSolver:

77

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

def __init__(self):
self.X = [[Int("self.X_%s_%s" % (i, j)) for j in range(3)]

for i in range(8)]
self.s = Solver()
self.s.add([And(0 <= self.X[i][j], self.X[i][j]<= 9) for i in range(8) for j in range(1,3)])
self.s.add([And(0 <= self.X[i][0], self.X[i][0]<= 9) for i in range(8)])

def set_constraints(self):
self.s.add(self.X[0][0]*self.X[0][1]*self.X[0][2]==294)
self.s.add(self.X[1][0]*self.X[1][1]*self.X[1][2]==216)
self.s.add(self.X[2][0]*self.X[2][1]*self.X[2][2]==135)
self.s.add(self.X[3][0]*self.X[3][1]*self.X[3][2]==98)
self.s.add(self.X[4][0]*self.X[4][1]*self.X[4][2]==112)
self.s.add(self.X[5][0]*self.X[5][1]*self.X[5][2]==84)
self.s.add(self.X[6][0]*self.X[6][1]*self.X[6][2]==245)
self.s.add(self.X[7][0]*self.X[7][1]*self.X[7][2]==40)
self.s.add(self.X[0][0]*self.X[1][0]*self.X[2][0]*self.X[3][0]*self.X[4][0]*self.X[5][0]*self.X[6][0]*self.X[7][0]==8890560)
self.s.add(self.X[0][1]*self.X[1][1]*self.X[2][1]*self.X[3][1]*self.X[4][1]*self.X[5][1]*self.X[6][1]*self.X[7][1]==156800)
self.s.add(self.X[0][2]*self.X[1][2]*self.X[2][2]*self.X[3][2]*self.X[4][2]*self.X[5][2]*self.X[6][2]*self.X[7][2]==55566)

def output_solution(self):
m = self.s.model()
for i in range(8):

print(" ".join([str(m.evaluate(self.X[i][j])) for j in range(3)]))

def solve(self):
self.set_constraints()
if self.s.check() == sat:

self.output_solution()
else:

print(self.s)
print("Failed to solve.")

s = MysteriousNumbersSolver()
s.solve()

Here is the solution

7 7 6

78

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

9 8 3
9 5 3
7 2 7
8 2 7
7 4 3
5 7 7
8 5 1

79

50 Can You Skillfully Ski The
Slopes?

Congratulations, you’ve made it to the finals of the Riddler Ski Federation’s winter champi-
onship! There’s just one opponent left to beat, and then the gold medal will be yours.
Each of you will complete two runs down the mountain, and the times of your runs will

be added together. Whoever skis in the least overall time is the winner. Also, this being the
Riddler Ski Federation, you have been presented detailed data on both you and your opponent.
You are evenly matched, and both have the same normal probability distribution of finishing
times for each run. And for both of you, your time on the first run is completely independent
of your time on the second run.
For the first runs, your opponent goes first. Then, it’s your turn. As you cross the finish

line, your coach excitedly signals to you that you were faster than your opponent. Without
knowing either exact time, what’s the probability that you will still be ahead after the second
run and earn your gold medal?

Extra credit: Over in the snowboarding championship, there are 30 finalists, including you
(apparently, you’re a dual-sport threat!). Again, you are the last one to complete the first run,
and your coach signals that you are in the lead. What is the probability that you’ll win gold
in snowboarding?

Solution
Let the finishing times for the two rounds of the two players be denoted by A1,A2,B1 and B2
which are independent and identically distributed normal random variables. We are given
that B1 < A1. For player B to win the gold medal, A1 + A2 > B1 + B2. If we define two
new random variables X = A1 − B1 and Y = A2 − B2, the required probability is given by
P[X + Y > 0|X > 0]. As A1,A2,B1 and B2 are independent identically distributed normal
random variables, X and Y are also independent normal random variables with mean 0.
The joint probability density function of X and Y, is symmetric in x and y. The probability
P[X > 0 ∧ X + Y > 0] can be obtained by integrating the joint density function over the
darker region in the figure below:

Using the symmetry of the joint density function, it is easy to see that the probability is 3
8 .

Therefore, the required probability is given by

P[X+ Y > 0|X > 0] = P[X > 0∧ X+ Y > 0]
P[X > 0]

=
3
8
1
2
=

3
4.

The above value matches with that obtained by simulation using the code below. When
you have 30 players the probability of you winning the gold given that you finished with the
lowest time in the first run is .31.

80

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Computational Solution
from numpy.random import normal

runs = 1000000
def prob_gold(n):

num, den = 0, 0
for _ in range(runs):

firstrun_times = normal(0,1,n)
total_times = firstrun_times + normal(0,1,n)
if min(firstrun_times) == firstrun_times[n-1]:

den += 1
if min(total_times) == total_times[n-1]:

num += 1
return num/den

print("Probability of gold when number of players=%i is %f" % (2, prob_gold(2)))
print("Probability of gold when number of players=%i is %f" % (30, prob_gold(30)))

81

51 Little Cubes

Riddler Express
I recently found four cubic blocks in a peculiar arrangement. Three of them were flat on the
ground, with their corners touching and enclosing an equilateral triangle. Meanwhile, the
fourth cube was above the other three, filling in the gap between them in a surprisingly snug
manner. Here’s a photo I took of this arrangement:

Now, if each of the four cubes has side length 1, then how far above the ground is the
bottommost corner of the cube on top?

Solution
The part of the fourth cube on the top enclosed by the three cubes on the floor is an inverted
tetrahedron whose base is an equilateral triangle. Using symmetry it is easy to see that the
bottommost corner of the tetrahedron is directly above the center of the base. The triangle
formed by the following line segments is a right angled triangle:
1. The line segment from the bottommost corner to the center of the base. Let this be h

units.
2. The line segment from the center of the base to the midpoint of a side of the base. The

length of this line segment is 1/2
√
3 units.

3. The line segment from the midpoint of the base to the bottommost corner along the face
of the tetrahedron. This is the hypotenuse of the triangle. The length of this line segment
is 1/2 units. This follows from the fact that the face of the tetrahedron is an right angled
isoceles triangle with base 1 unit.

Therefore, we have h2 + (1
2
√
3)

2 = (12)
2 =⇒ h = 1√

6 .
The center of the base of the inverted tetrahedron is at a height of 1 unit (the length of the

side of a cube) from the ground. The bottommost corner is therefore at a height of 1− 1√
6

from the ground.

82

52 Can You Randomly Move The
Tower?

Riddler Express
For your first weekly CrossProduct, there are five three-digit numbers - each belongs in a row
of the table below, with one digit per cell. The products of the three digits of each number are
shown in the rightmost column. Meanwhile, the products of the digits in the hundreds, tens
and ones places, respectively, are shown in the bottom row.

Can you find all five three-digit numbers and complete the table?

Solution
from z3 import *

class MysteriousNumbersSolver:
def __init__(self):

self.X = [[Int("self.X_%s_%s" % (i, j)) for j in range(3)]
for i in range(5)]

self.s = Solver()
self.s.add([And(0 <= self.X[i][j], self.X[i][j]<= 9) for i in range(5) for j in range(1,3)])
self.s.add([And(0 <= self.X[i][0], self.X[i][0]<= 9) for i in range(5)])

def set_constraints(self):
self.s.add(self.X[0][0]*self.X[0][1]*self.X[0][2]==135)
self.s.add(self.X[1][0]*self.X[1][1]*self.X[1][2]==45)
self.s.add(self.X[2][0]*self.X[2][1]*self.X[2][2]==64)
self.s.add(self.X[3][0]*self.X[3][1]*self.X[3][2]==280)
self.s.add(self.X[4][0]*self.X[4][1]*self.X[4][2]==70)
self.s.add(self.X[0][0]*self.X[1][0]*self.X[2][0]*self.X[3][0]*self.X[4][0]==3000)
self.s.add(self.X[0][1]*self.X[1][1]*self.X[2][1]*self.X[3][1]*self.X[4][1]==3969)
self.s.add(self.X[0][2]*self.X[1][2]*self.X[2][2]*self.X[3][2]*self.X[4][2]==640)

def output_solution(self):
m = self.s.model()
for i in range(5):

print(" ".join([str(m.evaluate(self.X[i][j])) for j in range(3)]))

def solve(self):

83

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

self.set_constraints()
if self.s.check() == sat:

self.output_solution()
else:

print(self.s)
print("Failed to solve.")

s = MysteriousNumbersSolver()
s.solve()

Here is the solution

3 9 5
5 9 1
8 1 8
5 7 8
5 7 2

Riddler Classic
Cassius the ape (a friend of Caesar’s) has gotten his hands on a Lucas’ Tower puzzle (also
commonly referred to as the “Tower of Hanoi”). This particular puzzle consists of three poles
and three disks, all of which start on the same pole. The three disks have different diameters
— the biggest disk is at the bottom and the smallest disk is at the top. The goal is to move all
three disks from one pole to any other pole, one at a time, but there’s a catch. At no point can
a larger disk ever sit atop a smaller disk. It turns out that Cassius couldn’t care less about
solving the puzzle, but he is very good at following directions and understands a larger disk
can never sit atop a smaller disk. With each move, he randomly chooses one among the set of
valid moves.

On average, how many moves will it take for Cassius to solve this puzzle with three disks?

Solution
The analytical solution for the case of n disks has been provided in this paper.

On average it will take Cassius 141.45 moves to solve the puzzle with three disks.

from random import choice

runs, n, total_cnt = 100000, 3, 0
other_towers = [[1,2],[0,2],[0,1]]
for _ in range(runs):

cnt, towers = 0, [list(range(n,0,-1)),[],[]]
while towers[2] != list(range(n,0,-1)):

moves = []
for i in [0,1,2]:

for j in other_towers[i]:
if towers[i] and (not towers[j] or towers[j][-1]>towers[i][-1]):

moves.append((i,j))
f, t = choice(moves)
towers[t].append(towers[f].pop())
cnt += 1

total_cnt += cnt
print(total_cnt/runs)

84

https://arxiv.org/pdf/1304.3780.pdf

53 Can You Cross Like A Boss?

Riddler Express
This time around, there are six three-digit numbers — each belongs in a row of the table
below, with one digit per cell. The products of the three digits of each number are shown in
the rightmost column. Meanwhile, the products of the digits in the hundreds, tens and ones
places, respectively, are shown in the bottom row.

Can you find all six three-digit numbers and complete the table?

Solution
from z3 import *

class MysteriousNumbersSolver:
def __init__(self):

self.X = [[Int("self.X_%s_%s" % (i, j)) for j in range(3)]
for i in range(6)]

self.s = Solver()
self.s.add([And(0 <= self.X[i][j], self.X[i][j]<= 9) for i in range(6) for j in range(1,3)])
self.s.add([And(0 <= self.X[i][0], self.X[i][0]<= 9) for i in range(6)])

def set_constraints(self):
self.s.add(self.X[0][0]*self.X[0][1]*self.X[0][2]==210)
self.s.add(self.X[1][0]*self.X[1][1]*self.X[1][2]==144)
self.s.add(self.X[2][0]*self.X[2][1]*self.X[2][2]==54)
self.s.add(self.X[3][0]*self.X[3][1]*self.X[3][2]==135)
self.s.add(self.X[4][0]*self.X[4][1]*self.X[4][2]==4)
self.s.add(self.X[5][0]*self.X[5][1]*self.X[5][2]==49)
self.s.add(self.X[0][0]*self.X[1][0]*self.X[2][0]*self.X[3][0]*self.X[4][0]*self.X[5][0]==6615)
self.s.add(self.X[0][1]*self.X[1][1]*self.X[2][1]*self.X[3][1]*self.X[4][1]*self.X[5][1]==15552)
self.s.add(self.X[0][2]*self.X[1][2]*self.X[2][2]*self.X[3][2]*self.X[4][2]*self.X[5][2]==420)

def output_solution(self):
m = self.s.model()
for i in range(6):

print(" ".join([str(m.evaluate(self.X[i][j])) for j in range(3)]))

85

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

def solve(self):
self.set_constraints()
if self.s.check() == sat:

self.output_solution()
else:

print(self.s)
print("Failed to solve.")

s = MysteriousNumbersSolver()
s.solve()

Here is the solution

7 6 5
9 8 2
3 9 2
5 9 3
1 4 1
7 1 7

86

54 Will The Knight Return Home?

Suppose that a knight makes a “random walk” on an infinite chessboard. Specifically, on
every turn the knight follows standard chess rules and moves to one of its eight accessible
squares, each with probability 1/8.
What is the probability that after the twentieth move the knight is back on its starting

square?

Solution
The probability of the knight returning to the starting square is 0.006. The Python code for
the Monte-Carlo simulation is given below.

import numpy as np
from random import choice
runs, n = 1000000, 20
start = np.array([0,0])
moves = [np.array(m) for m in [[2,1],[1,2],[-1,2],[-2,1],[1,-2],[2,-1],[-1,-2],[-2,-1]]]
cnt_succ = 0
for _ in range(runs):

cur = np.array(start)
for _ in range(n):

cur += choice(moves)
if (cur==start).all():

cnt_succ += 1
print(cnt_succ/runs)

87

55 The Puzzle Of The Lonesome
King

The childless King of Solitaria lives alone in his castle. The lonesome king one day offers
one lucky subject the chance to be prince or princess for a day. The loyal subjects leap at the
opportunity, having heard tales of the king’s opulent castle and decadent meals. The subjects
assemble on the village green, hoping to be chosen.

The winner is chosen through the following game. In the first round, every subject simul-
taneously chooses a random other subject on the green. (Of course, it’s possible that some
subjects will be chosen by more than one other subject.) Everybody chosen is eliminated.
(Not killed or anything, just sent back to their hovels.) In each successive round, the subjects
who are still in contention simultaneously choose a random remaining subject, and again
everybody chosen is eliminated. If there is eventually exactly one subject remaining at the
end of a round, he or she wins and heads straight to the castle for fêting. However, it’s also
possible that everybody could be eliminated in the last round, in which case nobody wins and
the king remains alone. If the kingdom has a population of 56,000 (not including the king), is
it more likely that a prince (or princess) will be crowned or that nobody will win?

Solution
Using the Python code below for the Monte-Carlo simulation, we see that the probability for
a prince or princess to be crowned is around 0.48.

from random import choice
runs, pop = 10000, 1000
cnt_succ = 0
for _ in range(runs):

curpop, chosen = set(range(pop)), []
while curpop:

for i in curpop:
chosen.append(choice(list(curpop-set([i]))))

curpop = set(curpop) - set(chosen)
if len(curpop)==1:

cnt_succ += 1
break

print(cnt_succ/runs)

88

56 HowMuch Will The Picky Eater
Eat?

Every morning, before heading to work, you make a sandwich for lunch using perfectly
square bread. But you hate the crust so much that you’ll only eat the portion of the sandwich
that is closer to the center of the bread than to the edges so that you don’t run the risk of
accidentally biting down on that charred, stiff perimeter. How much of the sandwich will you
eat?

Solution
From the Monte-Carlo simulation using the Python code below, we see that the percentage of
sandwich eaten is 21.9%.

from random import uniform
from math import sqrt
runs = 1000000
cnt_succ = 0
for _ in range(runs):

x,y = uniform(-0.5, 0.5), uniform(-0.5, 0.5)
cd = sqrt(x**2+y**2)
sd = min(x+0.5, 0.5-x,y+0.5, 0.5-y)
if cd < sd:

cnt_succ += 1
print(cnt_succ/runs)

89

57 En Garde! Can You Win The
Fencing Relay?

Riddler Express
My condo complex has a single elevator that serves four stories: the garage (G), the first
floor (1), the second floor (2) and the third floor (3). Unfortunately, the elevator is mal-
functioning and stopping at every single floor, no matter what. The elevator always goes
G, 1, 2, 3, 2, 1,G, 1, 2, etc.
I want to board the elevator on a random floor (with all four floors being equally likely).

As I round the corner to approach the elevator, I hear that its doors have closed, but I have no
further information about which floor it’s on or whether the elevator is going up or down.
The doors might have just closed on my floor, for all I know.

On average, how many stops will the elevator make until it opens on my floor (including
the stop on your floor)? For example, if I am waiting on the second floor, and I heard the
doors closing on the garage level, then the elevator would open on my floor in two stops.

Extra credit: Instead of four floors, suppose my condo hadN floors. On average, how many
stops will the elevator make until it opens on my floor?

Solution
From the simulation below, we see that the average number of stops when there are four
floors is 2.83.

from itertools import cycle
from random import choice, randint

def avg_stops(n = 4, runs = 100000):
rotate = lambda l, n: l[-n:] + l[:-n]
floors, elevator_cycle = list(range(n)), list(range(n)) + list(range(n-2,0,-1))
total_stops = 0
for _ in range(runs):

my_floor, start = choice(floors), randint(0, len(elevator_cycle)-1)
for f in cycle(rotate(elevator_cycle, start)):

total_stops += 1
if f == my_floor:

break
return total_stops/runs

print(avg_stops())

Riddler Classic
You are the coach at Riddler Fencing Academy, where your three students are squaring off
against a neighboring squad. Each of your students has a different probability of winning any
given point in a match. The strongest fencer has a 75 percent chance of winning each point.

90

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

The weakest has only a 25 percent chance of winning each point. The remaining fencer has a
50 percent probability of winning each point.
The match will be a relay. First, one of your students will face off against an opponent.

As soon as one of them reaches a score of 15, they are both swapped out. Then, a different
student of yours faces a different opponent, continuing from wherever the score left off. When
one team reaches 30 (not necessarily from the same team that first reached 15), both fencers
are swapped out. The remaining two fencers continue the relay until one team reaches 45
points.
As the coach, you can choose the order in which your three students occupy the three

positions in the relay: going first, second or third. How will you order them? And then what
will be your team’s chances of winning the relay?

Solution
From the simulation below, we see that the probability of the permutationweakest, medium, strongest
winning is the highest at ≈ 93%.

from itertools import permutations
from random import random

def winning_probabilities(runs = 100000):
win_prob = {'w':0.25,'s':0.75, 'm':0.5}
probs = []
for p1,p2,p3 in permutations(win_prob.keys()):

total_wins = 0
for _ in range(runs):

s1, s2 = 0, 0
while (s1 < 15 and s2 < 15):

if (random() < win_prob[p1]):
s1 += 1

else:
s2 += 1

while (s1 < 30 and s2 < 30):
if (random() < win_prob[p2]):

s1 += 1
else:

s2 += 1
while (s1 < 45 and s2 < 45):

if (random() < win_prob[p3]):
s1 += 1

else:
s2 += 1

if s1 == 45:
total_wins += 1

probs.append((p1,p2,p3,total_wins/runs))
return probs

for p1,p2,p3,prob in winning_probabilities():
print(f"Probability of the permutation {(p1,p2,p3)} winning is {prob}")

91

58 Can You Slice The Ice?

Riddler Express
I have a most peculiar menorah. Like most menorahs, it has nine total candles — a central
candle, called the shamash, four to the left of the shamash and another four to the right. But
unlike most menorahs, the eight candles on either side of the shamash are numbered. The
two candles adjacent to the shamash are both “1, ” the next two candles out from the shamash
are “2, ” the next pair are “3, ” and the outermost pair are “4.”

The shamash is always lit. How many ways are there to light the remaining eight candles
so that sums on either side of the menorah are “balanced”? (For example, one such way is to
light candles 1 and 4 on one side and candles 2 and 3 on the other side. In this case, the sums
on both sides are 5, so the menorah is balanced.)

Solution
The number of ways of lighting the candles satisfying the conditions is 25. The different
ways of lighting the candles is given below:

((’l’, 1), (’r’, 1)) ((’l’, 2), (’r’, 2)) ((’l’, 3), (’r’, 3)) ((’l’, 4), (’r’, 4)) ((’l’, 1), (’l’, 2), (’r’, 3)) ((’l’, 1),
(’l’, 3), (’r’, 4)) ((’l’, 3), (’r’, 1), (’r’, 2)) ((’l’, 4), (’r’, 1), (’r’, 3)) ((’l’, 1), (’l’, 2), (’r’, 1), (’r’, 2)) ((’l’, 1),
(’l’, 3), (’r’, 1), (’r’, 3)) ((’l’, 1), (’l’, 4), (’r’, 1), (’r’, 4)) ((’l’, 1), (’l’, 4), (’r’, 2), (’r’, 3)) ((’l’, 2), (’l’, 3),
(’r’, 1), (’r’, 4)) ((’l’, 2), (’l’, 3), (’r’, 2), (’r’, 3)) ((’l’, 2), (’l’, 4), (’r’, 2), (’r’, 4)) ((’l’, 3), (’l’, 4), (’r’, 3),
(’r’, 4)) ((’l’, 1), (’l’, 2), (’l’, 3), (’r’, 2), (’r’, 4)) ((’l’, 1), (’l’, 2), (’l’, 4), (’r’, 3), (’r’, 4)) ((’l’, 2), (’l’, 4),
(’r’, 1), (’r’, 2), (’r’, 3)) ((’l’, 3), (’l’, 4), (’r’, 1), (’r’, 2), (’r’, 4)) ((’l’, 1), (’l’, 2), (’l’, 3), (’r’, 1), (’r’, 2),
(’r’, 3)) ((’l’, 1), (’l’, 2), (’l’, 4), (’r’, 1), (’r’, 2), (’r’, 4)) ((’l’, 1), (’l’, 3), (’l’, 4), (’r’, 1), (’r’, 3), (’r’, 4))
((’l’, 2), (’l’, 3), (’l’, 4), (’r’, 2), (’r’, 3), (’r’, 4)) ((’l’, 1), (’l’, 2), (’l’, 3), (’l’, 4), (’r’, 1), (’r’, 2), (’r’, 3),
(’r’, 4))

from itertools import product, combinations

def menorah_lighting(n=4):
side_sum = lambda comb, side: sum([i for s, i in comb if s == side])
candles = list(product(["l","r"], range(1, n+1)))
cnt, lightings = 0, []
for k in range(2, 2*n+1):

for comb in combinations(candles, k):
if side_sum(comb, "l") == side_sum(comb, "r"):

lightings.append(comb)
cnt += 1

return cnt, lightings

cnt, lightings = menorah_lighting()
print(cnt)
for l in lightings:

print(l)

92

59 Can you stick it to the genie?

Riddler Express
I have three dice (d4,d6,d8) on my desk that I fiddle with while working, much to the chagrin
of my co-workers. For the uninitiated, the d4 is a tetrahedron that is equally likely to land on
any of its four faces (numbered 1 through 4), the d6 is a cube that is equally likely to land on
any of its six faces (numbered 1 through 6), and the d8 is an octahedron that is equally likely
to land on any of its eight faces (numbered 1 through 8).
I like to play a game in which I roll all three dice in “numerical” order: d4, then d6 and

then d8. I win this game when the three rolls form a strictly increasing sequence (such as
2− 4− 7, but not 2− 4− 4). What is my probability of winning?

Extra credit: Instead of three dice, I now have six dice: d4,d6,d8,d10,d12 and d20. If I roll
all six dice in “numerical” order, what is the probability I’ll get a strictly increasing sequence?

Solution
From the simulation below, we see that the probability of the winning with d4,d6 and d8 is
0.25 and the probability of winning with d4,d6,d8,d10,d12 and d20 is 0.0118.

from random import choice
def prob(dice_num_faces, runs=10000000):

dice = {n:list(range(1, n+1)) for n in dice_num_faces}
cnt_succ = 0
for _ in range(runs):

roll = [choice(dice[d]) for d in sorted(dice.keys())]
cnt_succ += all(i < j for i, j in zip(roll, roll[1:]))

return cnt_succ/runs

print(prob([4,6,8]))
print(prob([4,6,8,10,12,20]))

93

60 HowMany Friends Are On The
Riddler Social Network?

Riddler Express
A group of 101 people join µϵθα, and each person has a random, 50 percent chance of being
friends with each of the other 100 people. Friendship is a symmetric relationship on µϵθα, so
if you’re friends with me, then I am also friends with you.I pick a random person among the
101 — let’s suppose her name is Marcia. On average, how many friends would you expect
each of Marcia’s friends to have?

Solution
From the simulation below, we see that the expected number of friends of each of Marcia’s
friends is 50.5. It is interesting to note that Marcia on average would have only 50 friends.

import networkx as nx
from random import random, randint, choice

def exp_num_friends(n, runs = 10000):
total_deg = 0
for _ in range(runs):

G = nx.Graph()
for i in range(n):

G.add_node(i)
for i in range(n-1):

for j in range(i+1, n):
if random() < 0.5:

G.add_edge(i,j)
marcia = randint(0,n-1)
marcia_friends = list(G.adj[marcia].keys())
if marcia_friends:

total_deg += G.degree[choice(marcia_friends)]
return total_deg/runs

print(exp_num_friends(101))

Riddler Classic
The sum of the factors of 36 — including 36 itself — is 91. Coincidentally, 36 inches rounded
to the nearest centimeter is . . . 91 centimeters!

Can you find another whole number like 36, where you can “compute” the sum of its factors
by converting from inches to centimeters?
Extra credit: Can you find a third whole number with this property? How many more

whole numbers can you find?

94

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Solution
From the code below we see that 378 and 49600 are two numbers below 1000000 that satisify
the given property.

from functools import reduce

def sum_of_factors(n):
return sum(set(reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))))

def inches_to_cm_same_as_sum_of_divisors():
nums= []
for i in range(37,1000000):

if round(i*2.54) == sum_of_factors(i):
nums.append(i)

return nums

print(inches_to_cm_same_as_sum_of_divisors())

95

61 Can You Survive Squid Game?

Riddler Express
I have a spherical pumpkin. I carefully calculate its volume in cubic inches, as well as its
surface area in square inches.
But when I came back to my calculations, I saw that my units — the square inches and

the cubic inches — had mysteriously disappeared from my calculations. But it didn’t matter,
because both numerical values were the same!

What is the radius of my spherical pumpkin?
Extra credit: Let’s dispense with 3D thinking. Instead, suppose I have an n-hyper spherical

pumpkin. Once again, I calculate its volume (with units inn) and surface area (with units
inn−1). Miraculously, the numerical values are once again the same! What is the radius of
my n-hyper spherical pumpkin?

Solution
Let r be the radius of the spherical pumpkin. We have

4
3πr

3 = 4πr2 =⇒ r = 3in

The recurrence relation for the surface area of an n-ball Vn(R) is given by

An(R) =
d

dR
Vn(R) =

n

R
Vn(R)

If An(R) = Vn(R), we have R = n.

Riddler Classic
Congratulations, you’ve made it to the fifth round of The Squiddler - a competition that takes
place on a remote island. In this round, you are one of the 16 remaining competitors who
must cross a bridge made up of 18 pairs of separated glass squares. Here is what the bridge
looks like from above:

To cross the bridge, you must jump from one pair of squares to the next. However, you
must choose one of the two squares in a pair to land on. Within each pair, one square is made
of tempered glass, while the other is made of normal glass. If you jump onto tempered glass,
all is well, and you can continue on to the next pair of squares. But if you jump onto normal
glass, it will break, and you will be eliminated from the competition.
You and your competitors have no knowledge of which square within each pair is made

of tempered glass. The only way to figure it out is to take a leap of faith and jump onto a

96

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

square. Once a pair is revealed — either when someone lands on a tempered square or a
normal square — all remaining competitors take notice and will choose the tempered glass
when they arrive at that pair.

On average, how many of the 16 competitors will survive and make it to the next round of
the competition?

Solution
Let S(n,m) be the expected number of survivors when there are n competitors and m pairs
of glasses. We have the recurrence relation

S(n,m) =
1
2S(n,m− 1) + 1

2S(n− 1,m− 1)S(n, 0) = nS(0,m) = 0

The Python code to compute S(n,m) is given below:

def S(n , m):
if n == 0:

return 0
if m == 0:

return n
return 0.5*S(n, m-1) + 0.5*S(n-1, m-1)

On average, if there are 16 competitors and 18 pairs of glasses, we will have 7 survivors.

97

62 Who Betrayed Dune’s Duke
Leto?

Riddler Express
Duke Leto Atreides knows for a fact that there are not one, but two traitors within his royal
household. The suspects are Lady Jessica, Dr. Wellington Yueh, Gurney Halleck and Duncan
Idaho. Leto’s advisor, Thufir Hawat, will assist him in questioning the four suspects. Anyone
who is a traitor will tell a lie, while anyone who is not a traitor will tell the truth.

Upon interrogation, Jessica says that she is not the traitor, while Wellington similarly says
that he is not the traitor. Gurney says that Jessica or Wellington is a traitor. Finally, Duncan
says that Jessica or Gurney is a traitor. (Thufir, being the logician that he is, notes that when
someone says thing A is true or thing B is true, both A and B can technically be true.)
After playing back the interrogations in his mind, Thufir is ready to report the name of

one of the traitors to the duke. Whose name does he report?

Solution
Let j,w,g,d be the boolean variables indicating whether or not Jessica, Wellington, Gurney
and Duncan are traitors or not. The statements made by them and the fact that there are two
traitors reduce to the following set of logical propositions:

1. If g =⇒ ¬(j∨w)

2. If ¬g =⇒ (j∨w)

3. If d =⇒ ¬(j∨ g)

4. If ¬d =⇒ (j∨ g)

5. (j∧w)∨ (j∧ g)∨ (j∧ d)∨ (w∧ g)∨ (w∧ d)∨ (g∧ d)

Here is the Python code in Z3 to check if the propositions above can be satisfied:
from z3 import *
j = Bool('j')
w = Bool('w')
g = Bool('g')
d = Bool('d')
s = Solver()

s.add(Implies(g,Not(Or(j,w))))
s.add(Implies(Not(g),Or(j,w)))
s.add(Implies(d,Not(Or(j,g))))
s.add(Implies(Not(d),Or(j,g)))
s.add(Or([And(j,w), And(j,g), And(j,d), And(w,g), And(w,d), And(g,d)]))

while s.check() == sat:
m = s.model()
print(m)
s.add(Or(j != m[j], g != m[g], w != m[w], d != m[d]))

98

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

We see that there are two cases where the propositions above are satisfied:
[g = False, j = True, w = True, d = False] [w = True, g = False, j = False, d = True]

In both the cases, Wellington is one of the traitors, which means that Thufir reported
Wellington as one of the traitors to the Duke.

Riddler Classic
Suppose you have an equilateral triangle. You pick three random points, one along each of its
three edges, uniformly along the length of each edge — that is, each point along each edge
has the same probability of being selected.

With those three randomly selected points, you can form a new triangle inside the original
one. What is the probability that the center of the larger triangle also lies inside the smaller
one?

Solution
The logic for determining if a point is inside or outside a given triangle is described here.

From the simulation, we see that the probability the center of the equilateral triangle lies
inside the smaller random triangle is 0.46.

The Python code for implementing the above logic is given below:

import numpy as np
from math import sqrt
from random import random

triangle = [np.array([-.5,-sqrt(3)/6]),
np.array([.5,-sqrt(3)/6]),
np.array([0, sqrt(3)/3])]

center = np.array([0,0])

def exp_percent_center_inside(triangle, center, runs = 100000):
det = np.cross
c=0
for _ in range(runs):

[A, B, C], v = triangle, center
D, E, F = A + random()*(B - A), B + random()*(C - B), C + random()*(A - C)
v0, v1, v2 = D, E - D, F - D
a = (det(v, v2) - det(v0, v2))/det(v1, v2)
b = -((det(v, v1) - det(v0, v1))/det(v1, v2))
if a > 0 and b > 0 and a + b < 1:

c += 1
return c/runs

print(exp_percent_center_inside(triangle, center))

99

https://mathworld.wolfram.com/TriangleInterior.html

63 Can You Climb Your Way To
Victory?

Riddler Express
While watching batter spread out onmywaffle iron, and thinking back to a recent conversation
I had with Friend-of-The-Riddler™ Benjamin Dickman, I noticed the following sequence of
numbers:

1, 4, 4, 0, 4, 8, 0, 0, 4, 4, 8, . . .

Before you ask — yes, you can find this sequence on the On-Line Encyclopedia of Integer
Sequences. However, for the full Riddler experience, I urge you to not look it up. See if you
can find the next few terms in the sequence, as well as the pattern.
Now, for the actual riddle: Once you’ve determined the pattern, can you figure out the

average value of the entire sequence?

Solution
Let the sequence be denoted by s(n). You can find more about the sequence here . Then
s(n) represents the number of ways an integer n can be expressed as a sum of two squares
(positive, negative, or zero). That is, s(n) denotes the number of solutions in integers (x,y to
the equation x2 + y2 = n. For example, s(5) = 8 since the solutions to x2 + y2 = 5 are (1, 2),
(2, 1), (−1, 2), (2,−1), (1,−2), (−2, 1), (−1,−2), and (−2,−1). Because s(n) = 0 whenever
n has the form 4k− 1, s(n) is a very erratic function.Thankfully, the problem is about the
average value of s(n) as n → ∞. If we define t(n) to be the number of solutions in integers
to x2 + y2 ⩽ n, then the average of s(k) for 0 ⩽ k ⩽ n is

s(0) + s(1) + · · ·+ s(n)

n+ 1 =
t(n)

n+ 1
The code (using brute force) for calculating t(n) and t(n)/(n+ 1) is given below:

from math import sqrt, ceil

def t(n):
t, l = 0, ceil(sqrt(n))+1
for i in range(0, n+1):

for j in range(-l, l):
for k in range(-l, l):

if j**2 + k**2 == i:
t += 1

return t, t/(n+1)

print(list(map(t, [1,2,3,4,5,10,20,50,100])))

Here is a table of t(n) and t(n)/(n+ 1) for a few values of n:

100

https://oeis.org/A004018

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

n 1 2 3 4 5 10 20 50 100
t(n) 5 9 9 13 21 37 69 161 317
t(n)
n+1 2.5 3 2.25 2.6 3.5 3.36 3.29 3.16 3.15

Theorem
limn→∞ t(n)

n+1 = π.

Proof. The proof from the reference below is based on a geometric interpretation of t(n),
and is due to Carl Friedrich Gauss (1777–1855): t(n) is the number of points in or on a circle
x2 + y2 = n with integer coordinates. For example, t(10) = 37 since the circle centered at
the origin of radius

√
10 contains 37 lattice points as illustrated in the figure below:

If we draw a square with area 1 centered at each of the 37 points, then the total area (in grey)
of the squares is also t(n). Thus we would expect the area of the squares to be approximately
the area of the circle, or in general, t(n) to be approximately π(

√
n)2 = πn. If we expand

the circle of radius
√
n by half the length of the diagonal

√
2/2 of a square of area 1, then the

expanded circle contains all the squares. If we contract the circle by the same amount, then
the contracted circle would be contained in the union of all the squares as seen in the figure
below:
Thus,

π(
√
n−

√
2/2)2 ⩽ t(n) ⩽ π(

√
n+

√
2/2)2

Dividing each term by n+ 1 and applying the squeeze theorem for limits yields the desired
result.

References
Charming Proofs: A Journey into Elegant Mathematics

101

https://www.amazon.co.uk/Charming-Proofs-Mathematics-Mathematical-Expositions/dp/0883853485

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Riddler Classic
The finals of the sport climbing competition has eight climbers, each of whom compete in
three different events: speed climbing, bouldering and lead climbing. Based on their time and
performance, each of the eight climbers is given a ranking (first through eighth, with no ties
allowed) in each event, as well as a corresponding score (1 through 8, respectively).

The three scores each climber earns are then multiplied together to give a final score. For
example, a climber who placed second in speed climbing, fifth in bouldering and sixth in lead
climbing would receive a score of 2Ö5Ö6, or 60 points. The gold medalist is whoever achieves
the lowest final score among the eight finalists.

What is the highest (i.e., worst) score one could achieve in this event and still have a chance
of winning (or at least tying for first place overall)?

Solution
From the Monte-Carlo simulation below, we see that the worst score one could achieve
and still have a chance of winning is 48.

from random import shuffle
from operator import mul
from functools import reduce

def max_min_score(np, ne, runs = 1000000):
max_min_score = 0
for _ in range(runs):

ranks = [list(range(1,np+1)) for i in range(ne)]
for i in range(ne):

shuffle(ranks[i])
scores = [reduce(mul, [ranks[j][i] for j in range(ne)]) for i in range(np)]
min_score = min(scores)
if min_score > max_min_score:

max_min_score = min_score
return max_min_score

print(max_min_score(8,3))

102

64 Can You Bake The Radish Pie?

Riddler Express
I recently came across a rather peculiar recipe for something called Babylonian radish pie.
Intrigued, I began to follow the directions, which said I could start with any number of cups
of flour.
Any number? I mean, I had to start with some flour, so zero cups wasn’t an option. But

according to the recipe, any positive value was fair game. Next, I needed a second amount of
flour that was 3 divided by my original number. For example, if I had started with two cups
of flour, then the recipe told me I now needed 3 divided by 2, or 1.5, cups at this point.

I was then instructed to combine these amounts of flour and discard half. Apparently, this
was my new starting amount of flour. I was to repeat the process, combining this amount
with 3 divided by it and then discarding half.

The recipe told me to keep doing this, over and over. Eventually, I’d have the proper number
of cups of flour for my radish pie.

How many cups of flour does the recipe ultimately call for?

Solution 1
In the limit after convergence, let f be number of cups of flour required as per the recipe. We
have

f =
1
2

(
f+

3
f

)
=⇒ f2 = 3
=⇒ f =

√
3

Solution 2
This involves recognizing the recipe is infact a classic algorithm that is “Newton’s” method
to compute square roots x =

√
a for a > 0, i.e. to solve x2 = a. The algorithm involves the

following steps:
1. Starts with some guess x1 > 0.
2. Compute the sequence of improved guesses:

xn+1 =
1
2

(
xn +

a

xn

)
In light of the above, it is easy to see that the recipe ultimately calls for

√
3 cups of flour.

103

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Computational solution
From the code below, we see that the recipe ultimately calls for

√
3 ≈ 1.732 cups.

def num_cups():
s, c = 2, 0
while True:

c = 0.5*(s + 3/s)
if abs(s-c) < 0.000001:

break
s = c

return c

print(num_cups())

Riddler Classic
Lately, Rushabh has been thinking about very large regular polygons — that is, a polygon
all of whose sides and angles are congruent. His latest construction is a particular regular
1, 000-gon, which has 1, 000 sides of length 2. Rushabh picks one of its longest diagonals,
which connects two opposite vertices.

Now, this 1, 000-gon has many diagonals, but only some are perpendicular to that first
diagonal Rushabh picked. If you were to slice the polygon along all these perpendicular
diagonals, you’d break the first diagonal into 500 distinct pieces. Rushabh is curious — what
is the product of the lengths of all these pieces?
Extra credit: Now suppose you have a regular 1, 001-gon, each of whose sides has length

2. You pick a vertex and draw an altitude to the opposite side of the polygon. Again, you
slice the polygon along all the perpendicular diagonals, breaking the altitude into 500 distinct
pieces. What’s the product of the lengths of all these pieces this time?

Solution
The segments of the problem are the vertical components of the polygon’s sides on its
right half as shown in the diagram below; these lengths are Vk = 2 sin

(
(2k− 1)π

n

)
, with

k = 1, 2, ...,n/2 where n is even (here we make use of the fact that the polygon’s side rotates
through 2π/n as as it moves to the next side).

104

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

The product of the lengths of all these segments is given by

P =

n/2∏
k=1

Vk

=

n/2∏
k=1

2 sin
(
(2k− 1)π

n

)

=
1

in/2

n/2∏
k=1

ei(2k−1)t − e−i(2k−1)t, where t = π/n

=
1

in/2

n/2∏
k=1

ei(2k−1)t
n/2∏
k=1

1− e−i(4k−2)t

=
1

in/2e
inπ/4

n/2∏
k=1

1− e−i(4k−2)t

=
1

in/2e
inπ/4

n−1∏
k=1

1− e−i2kt/ n
2 −1∏
k=1

1− e−i4kt

=
1

in/2e
inπ/4

n−1∏
k=1

1− e−i2kπ/n/ n
2 −1∏
k=1

1− e−i2πk/n
2

Let f(x) =
∏n−1

k=1 (x − e−i2πk/n). The roots of this polynomial are the non-trivial n-th
roots of unity, so

f(x) =
xn − 1
x− 1 = 1+ x+ x2 + ...+ xn−1

Plugging in 1 for x yields f(1) =
∏n−1

k=1 (1− e−i2πk/n) = n.
Using the above result, we have

n−1∏
k=1

1− e−i2kπ/n = n

n
2 −1∏
k=1

1− e−i2πk/n
2 = n/2

Therefore, when n = 1000, the required product P = 2einπ/in/2 has the value 2.

Extra Credit
For the case when n is odd, we need to calculate the product

P =

n−1
2∏

k=1

Vk =

n−1
2∏

k=1

2 sin
(
(2k− 1)π

n

)

105

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

We make use of the result below. You can find the proof here.

n−1∏
k=1

2 sin kπ

n
= n

We have,

n−1∏
k=1

2 sin kπ

n
= n

=⇒
n−1
2∏

k=1

2 sin (2k− 1)π
n

·
n−1
2∏

k=1

2 sin 2kπ
n

= n

=⇒ P ·
n−1
2∏

k=1

2 sin
(
π−

2kπ
n

)
= n

=⇒ P · P = n

=⇒ P =
√
n

When n = 1001, the required product has the value
√
1001 ≈ 31.63854.

106

https://proofwiki.org/wiki/Product_Formula_for_Sine

65 Can You Get The Paper Cut?

Riddler Express
Earlier this year, Dakota Jones used a crystal key to gain access to a hidden temple, deep in
the Riddlerian Jungle. According to an ancient text, the crystal had exactly six edges, five
of which were 1 inch long. Also, the key was the largest such polyhedron (by volume) with
these edge lengths.

However, after consulting an expert, Jones realized she had the wrong translation. Instead
of definitively having five edges that were 1 inch long, the crystal only needed to have four
edges that were 1 inch long. In other words, five edges could have been 1 inch (or all six for
that matter), but the crystal definitely had at least four edges that were 1 inch long.

The translator confirmed that the key was indeed the largest such polyhedron (by volume)
with these edge lengths.

Once again, Jones needs your help. Now what is the volume of the crystal key?

Solution 1
Given the distances between the vertices of a tetrahedron the volume can be computed using
the Cayley–Menger determinant:

288 · V2 =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 d2

12 d2
13 d2

14
1 d2

12 0 d2
23 d2

24
1 d2

13 d2
23 0 d2

34
1 d2

14 d2
24 d2

34 0

∣∣∣∣∣∣∣∣∣∣
where the subscripts i, j ∈ {1, 2, 3, 4} represent the vertices and dij is the pairwise distance

between them – i.e., the length of the edge connecting the two vertices.
If a, b, c be the three edges that meet at a point, and x,y, z the opposite edges. The volume

V of the tetrahedron is given by

V =

√
4a2b2c2 − a2X2 − b2Y2 − c2Z2 + XYZ

12
where

X = b2 + c2 − x2

Y = a2 + c2 − y2

Z = a2 + b2 − z2

In our case, let a = b = c = y = 1, we have

X = 2− x2

Y = 1
Z = 2− z2

107

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

We need to find the value of x and z that maximizes

V =

√
4− (2− x2)2 − 1− (2− z2)2 + (2− x2)(2− z2)

12
Setting the partial derivates ∂V

∂x
and ∂V

∂z
to zero, we get the equations

2− 2x2 + z2 = 0
2− 2z2 + x2 = 0

Therefore, V attains the maximum value of 1
4
√
3 when x = z =

√
2.

References
Wikipedia

Solution 2
A polyhedron with 6 edges has to be a tetrahedron. In this particular case, we have a tetrahe-
dron where one face is an equilateral triangle of side length 1. The volume of tetrahedron
(which is a triangular pyramid where the base is an equilateral triangle) is given by

Vol =
1
3 × base× height

=
1
3 ×

√
3
4 × height

The volume is maximized when the height is maximized i.e. when another edge of length 1
is perpendicular to the base. Therefore the volume of the crystal key is

Volmax =
1
3 ×

√
3
4 × 1 = 1

4
√
3
.

Riddler Classic
One morning, Phil was playing with my daughter, who loves to cut paper with her safety
scissors. She especially likes cutting paper into “strips,” which are rectangular pieces of paper
whose shorter sides are at most 1 inch long.

Whenever Phil gives her a piece of standard printer paper (8.5 inches by 11 inches), she
picks one of the four sides at random and then cuts a 1-inch wide strip parallel to that side.
Next, she discards the strip and repeats the process, picking another side at random and
cutting the strip. Eventually, she is left with nothing but strips.

On average, how many cuts will she make before she is left only with strips?
Extra credit: Instead of 8.5 by 11-inch paper, what if the paper measuresm by n inches?

(And for a special case of this, what if the paper is square?)

108

https://en.wikipedia.org/wiki/Tetrahedron

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Solution 1
From the Monte-Carlo simulation below, we see that the expected number of cuts before
we are left only with strips is 14.29.

from random import random

def avg_num_cuts_mc(m, n, runs= 1000000):
sum_num_cuts = 0
for _ in range(runs):

num_cuts, cm, cn = 0, m, n
while cm > 1 and cn > 1:

r = random()
if r < 0.5:

cm -= 1
else:

cn -= 1
num_cuts += 1

sum_num_cuts += num_cuts
return sum_num_cuts/runs

print(f"Expected number of cuts is {avg_num_cuts_mc(11, 9)}")

Solution 2
We have the following recurrence relation for the expected number of cuts

C(m,n) = 1+ 1
2C(m− 1,n) + 1

2C(n− 1,m)

with initial conditions C(m, 0) = C(0,n) = 0.
Solving the recurrence relation usingmemoization we see that the expected number of

cuts is indeed 14.29.

def avg_num_cuts_rr(m, n):
C = [[0 for _ in range(n)] for _ in range(m)]
for i in range(1, m):

for j in range(1, n):
C[i][j] = 1 + 0.5*(C[i][j-1] + C[i-1][j])

return C[m-1][n-1]

print(f"Expected number of cuts is {avg_num_cuts_rr(11, 9)}")

109

66 Can You Draft A Riddler Fantasy
Football Dream Team?

Hames Jarrison has just intercepted a pass at one end zone of a football field, and begins
running — at a constant speed of 15 miles per hour — to the other end zone, 100 yards away.
At the moment he catches the ball, you are on the very same goal line, but on the other

end of the field, 50 yards away from Jarrison. Caught up in the moment, you decide you will
always run directly toward Jarrison’s current position, rather than plan ahead to meet him
downfield along a more strategic course.

Assuming you run at a constant speed (i.e., don’t worry about any transient acceleration),
how fast must you be in order to catch Jarrison before he scores a touchdown?

Solution
Let the chaser be at (0, 0) and the runner be (x0, 0) at the time t = 0 respectively, the instant
the pursuit begins, with the runner running at constant speed Vr along the line x = x0. The
chaser runs at a constant speed Vc along a curved path such that he is always moving directly
toward the runner, that is, the velocity vector of the chaser points directly at the runner at
every instant of time.

To find the curve of pursuit of the chaser, we assume that the chaser is at the location (x,y)
at time t ⩾ 0. At time t, the runner is at the point (x0,Vrt) and so, the slope of the tangent
line to the pursuit curve (the value of dy/dx at (x,y)) is given by

dy

dx
=

Vrt− y

x0 − x

We also know that the chaser would have ran a distance Vct along it by the time t. This
arc-length is also given by the expression on the right below:

Vct =

∫x

0

√
1+

(
dy

dz

)2

dz

Eliminating t from the above two equations, we get

1
Vc

∫x

0

√
1+

(
dy

dz

)2

dz =
y

Vr

−
(x− x0)

Vr

· dy
dx

=⇒ 1
Vc

∫x

0

√
1+ p2(z)dz =

y

Vr

−
(x− x0)

Vr

· p(x) , where dy/dx = p(x).

Differentiating under the integral sign with respect to x, we arrive at

1
Vc

√
1+ p2(x) =

p(x)

Vr

−
(x− x0)

Vr

· dp(x)
dx

−
1
Vr

p(x)

=⇒ (x− x0)
dp

dx
= −

Vr

Vc

√
1+ p2(x)

=⇒ dp√
1+ p2(x)

=
ndx

(x0 − x)
, where n = Vr/Vc

110

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Integrating the above equation, we get

ln(p+
√

1+ p2) + c = −n ln(x0 − x).

We see at t = 0, that p = dy/dx = 0 when x = 0 because at that instant, the runner as
well as the chaser are on the x− axis. It follows that c = −n ln(x0) and so

ln
[(

p+
√
1+ p2

)(
1− x

x0

)n]
= 0

=⇒
(
p+

√
1+ p2

)(
1− x

x0

)n

= 1.

From the above, we get

p(x) =
dy

dx
=

1
2

[(
1− x

x0

)−n

−

(
1− x

x0

)n]
Integrating the above equation, we get

y(x) + c =
1
2(x0 − x)

[
(1− x/x0)

n

1+ n
−

(1− x/x0)
−n

1− n

]
.

Since y = 0 when x = 0, pursuit curve equation is given by

y(x) =
n

1− n2x0 +
1
2(x0 − x)

[
(1− x/x0)

n

1+ n
−

(1− x/x0)
−n

1− n

]
In the given problem, we have Vr = 15 miles/hr, x0 = 50 and y = 100 when x = 50.

Substituting these values in the above equation, we get

100 = n

1− n2 · 50

=⇒ 2n2 + n− 2 = 0
Solving the above quadratic and taking the positive value for n, we see that the speed of

the chaser Vc should be
√
17+ 1
4 · 15 miles/hr

111

67 Can you catch the cricket?

Riddler Express
Help, there’s a cricket on my floor! I want to trap it with a cup so that I can safely move it
outside. But every time I get close, it hops exactly 1 foot in a random direction.

I take note of its starting position and come closer. Boom — it hops in a random direction.
I get close again. Boom — it takes another hop in a random direction, independent of the
direction of the first hop.

What is the most probable distance between the cricket’s current position after two random
jumps and its starting position? (Note: This puzzle is not asking for the expected distance, but
rather the most probable distance. In other words, if you consider the probability distribution
over all possible distances, where is the peak of this distribution?)

Solution
Let θ be the angle between the cricket’s jumps. Using the cosine law, we see that the distance
from the center to the end point of the second hop is

√
2− 2 cos θ. The least distance from

the starting point is 0 and the maximum distance is 2. We can asssume that θ ∼ U[0,π].
For any real x ∈ [0, 2], we have the CDF of X =

√
2− 2 cos θ,

F(x) = P[X ⩽ x]

= P[
√
2− 2 cos θ ⩽ x]

= P[
2− x2

2 ⩽ cos θ]

= P[arccos
(
2− x2

2

)
⩾ θ]

=
1
π
arccos

(
2− x2

2

)
Taking the derivative of the CDF, the PDF of X is f(x) = 2

π
√
4−x2 on [0, 2].

The PDF approaches infinity as x → 2, therefore the most probable distance is 2 feet.

Computational solution
From the histogram below, we see that the most probable distance is indeed 2 feet.

import numpy as np
from math import pi, sqrt, sin, cos
import matplotlib.pyplot as plt

def distances(num_samples = 1000000):
def dist(row):

return sqrt((cos(row[0])-cos(row[1]))**2 + (sin(row[0])-sin(row[1]))**2)
angles = np.random.uniform(0, 2*pi, (num_samples,2))
return np.apply_along_axis(dist, 1, angles)

112

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

def plot_dist_hist(distances):
plt.hist(distances, bins='auto')
plt.xlabel('Distance')
plt.ylabel('Frequency')
plt.title('Distance from the starting point')

plot_dist_hist(distances())

Riddler Classic
When you roll a pair of fair dice, the most likely outcome is 7 (which occurs 1/6 of the time)
and the least likely outcomes are 2 and 12 (which each occur 1/36 of the time).

Annoyed by the variance of these probabilities, I set out to create a pair of “uniform dice.”
These dice still have sides that are uniquely numbered from 1 to 6, and they are identical
to each other. However, they are weighted so that their sum is more uniformly distributed
between 2 and 12 than that of fair dice.

Unfortunately, it is impossible to create a pair of such dice so that the probabilities of all 11
sums from 2 to 12 are identical (i.e., they are all 1/11). But I bet we can get pretty close.

The variance of the 11 probabilities is the average value of the squared difference between
each probability and the average probability (which is, again, 1/11). One way to make my
dice as uniform as possible is to minimize this variance.
So how should I make my dice as uniform as possible? In other words, which specific

weighting of the dice minimizes the variance among the 11 probabilities? That is, what should
the probabilities be for rolling 1, 2, 3, 4, 5 or 6 with one of the dice?

Solution
Let p1,p2,p3,p4,p5,p6 be the probabilities for rolling 1, 2, 3, 4, 5 or 6 with one of the dice. We
have

∑6
i=1 pi = 1 and 0 < pi < 1 for i ∈ {1, . . . , 6}. To calculate the variance among the 11

probabilities, we first need to calculate P[sum = i] for i ∈ {2, . . . , 12}. The probabilities are
fairly straightforward to calculate e.g.

113

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

P[sum = 2] = p2
1

P[sum = 3] = 2p1p2

P[sum = 4] = p2
2 + 2p1p3

P[sum = 5] = 2p1p4 + 2p2p3

The variance is then given by

1
11

12∑
i=2

(P[sum = i] −
1
11)

2

From the code below we see that the minimum value of the variance is 0.001217 and
the probabilities are p1 = 0.244, p2 = 0.137, p3 = 0.118, p4 = 0.118, p5 = 0.137 and
p6 = 0.244.

from scipy.optimize import minimize

def variance(probs):
prob_sums={}
for d1,d2 in [(i,j) for i in range(6) for j in range(6)]:

prob_sums[d1+d2] = prob_sums.get(d1+d2, 0) + probs[d1]*probs[6+d2]
return sum([(p - 1/11)**2 for p in prob_sums.values()])/11

minimize(variance, [0.5]*12, constraints=[{'type':'eq', 'fun':lambda probs:sum(probs[:6])-1},
{'type':'eq', 'fun':lambda probs:sum(probs[6:])-1}])

If we allow the two dice to have different weightings, we can do much better.From the
code below we see that the minimum value of the variance is 0.000258 and the probabilities
are p1 = 0.5, p2 = 0, p3 = 0, p4 = 0, p5 = 0 and p6 = 0.5 for the first die and p1 = 0.125,
p2 = 0.186, p3 = 0.189, p4 = 0.189, p5 = 0.186 and p6 = 0.125 for the second.

minimize(variance, [0.5]*12, bounds=[(0,1)]*12,
constraints=[{'type':'eq', 'fun':lambda probs:sum(probs[:6])-1},
{'type':'eq', 'fun':lambda probs:sum(probs[6:])-1},
{'type':'eq', 'fun':lambda probs:probs[0]-0.5}])

114

68 Are You Clever Enough?

Riddler Express
You are very clever when it comes to solving Riddler Express puzzles. You are so clever, in
fact, that you are in the top 10 percent of solvers in Riddler Nation (which, as you know, has
a very large population). You don’t know where in the top 10 percent you are — in fact, you
realize that you are equally likely to be anywhere in the topmost decile. Also, no two people
in Riddler Nation are equally clever.
One Friday morning, you walk into a room with nine members randomly selected from

Riddler Nation. What is the probability that you are the cleverest solver in the room?

Solution
Without loss of generality we can assume that the normalized IQ of the population follows
the Uniform distribution U[0, 1].Let X1,X2, . . . ,Xn be the random variables representing the
IQs of the other individuals in the room apart from you where Xi ∼ U[0, 1] for i ∈ {1, . . . ,n}.
Let Y ∼ U[a,b] be the random variable representing your IQ where 0 ⩽ a < b ⩽ 1. We need
the probability P[X(n) < Y] where X(n) = max(X1, . . . ,Xn). From Order Statistics of the
Uniform distribution, we know that P[X(n) < y] = yn. Therefore the required probability is
given by

P[X(n) < Y] =

∫b

a

yn 1
b− a

dy

=
bn+1 − an+1

(n+ 1)(b− a)

When n = 9,a = 0.9 and b = 1.0 the required probability is 0.65132.

Computational solution
From the simulation below, we can see that the required probability is indeed ≈ 0.651.

import numpy as np

def prob_you_cleverest(n, start_iq = 0.9, end_iq = 1.0, runs = 5000000):
others_iqs = np.random.rand(runs, n)
your_iqs = np.random.uniform(start_iq, end_iq, runs)
return np.mean(np.where(np.max(others_iqs, axis=1) < your_iqs, [1], [0]))

print(prob_you_cleverest(9))

Riddler Classic
You have four standard dice, and your goal is simple: Maximize the sum of your rolls. So you
roll all four dice at once, hoping to achieve a high score.

115

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

But wait, there’s more! If you’re not happy with your roll, you can choose to reroll zero,
one, two or three of the dice. In other words, you must “freeze” one or more dice and set them
aside, never to be rerolled.

You repeat this process with the remaining dice — you roll them all and then freeze at least
one. You repeat this process until all the dice are frozen.

If you play strategically, what score can you expect to achieve on average?
Extra credit: Instead of four dice, what if you start with five dice? What if you start with

six dice? What if you start with N dice?

Computational solution
Let the number of dice be N, a roll can be represented as an N-tuple (d1,d2, . . . ,dN) where
di ∈ {1, . . . , 6} for i ∈ {1, . . . , 6}. There are a total of 6N possible rolls. LetMES(roll) be the
function which gives you the maximum expected score that can be achieved starting from a
given roll by choosing to reroll zero, one, two or N− 1 dice. The expected maximum score is
then given by

EMS(N) =
∑ 1

6N ·MES(roll)

where roll ∈ {(d1,d2, . . . ,dN)|di ∈ {1, . . . , 6}, i ∈ {1, . . . ,N}}.
For a given roll (d1,d2, . . . ,dN), let (ds(1),ds(2), . . . ,ds(N)) be the corresponding tuple

sorted in descending order.
The maximimum expected score that can be obtained by following the optimal strategy

starting from a given initial roll can be calculated as follows:

1. We first freeze the maximum value of a roll ds(1).

2. We then calculate the maximum expected score that can result by rerolling 0, . . . ,N− 1
remaining dice. If we are rolling j dice, the maximum expected score is the sum of the
expected maximum score for those dice EMS(j) and the topN− 1− j of the remaining
values of the roll after removing the maximum value which was already frozen.

This leads to the following definition of the functionMES:

MES((d1,d2, . . . ,dN)) = ds(1)+

max
{
EMS(j) +

N−j∑
i=2

ds(j)

∣∣∣∣j ∈ {0, . . . ,N− 1}
}

= max
{
EMS(j) +

N−j∑
i=1

ds(j)

∣∣∣∣j ∈ {0, . . . ,N− 1}
}

where j stands for the number of dice that are rerolled.
From the above it is clear that EMS(N) is ultimately defined in terms of EMS(0) =

0,EMS(1), . . . ,EMS(N− 1) and it can be calculated iteratively.
Using the code below, we see that the maximum score that can be achieved on average is

989065/52488=18.843.

from itertools import product
from fractions import Fraction

116

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

def MESs(num_dice):
exp_max_scores = {}
exp_max_scores[0] = 0
for n in range(1, num_dice+1):

total_mes = 0
for roll in product(range(1, 6 + 1), repeat = n):

sorted_roll = sorted(list(roll), reverse=True)
total_mes += max(sum(sorted_roll[:n-j]) + exp_max_scores[j] for j in range(n))

exp_max_scores[n]=Fraction(total_mes, 6**n)
return exp_max_scores

mess = MESs(5)
for i in range(1,5):

print(f"The average max score for {i} dice is {mess[i]}")

The average max score for 1 dice is 7/2
The average max score for 2 dice is 593/72
The average max score for 3 dice is 13049/972
The average max score for 4 dice is 989065/52488

117

69 Will Riddler Nation Win Gold In
Archery?

Riddler Express
Riddler Nation is competing against Conundrum Country at an Olympic archery event. Each
team fires three arrows toward a circular target 70 meters away. Hitting the bull’s-eye earns
a team 10 points, while regions successively farther away from the bull’s-eye are worth fewer
and fewer points.
Whichever team has more points after three rounds wins. However, if the teams are tied

after each team has taken three shots, both sides will fire another three arrows. (If they remain
tied, they will continue firing three arrows each until the tie is broken.)

For every shot, each archer of Riddler Nation has a one-third chance of hitting the bull’s-eye
(i.e., earning 10 points), a one-third chance of earning 9 points and a one-third chance of
earning 5 points.

Meanwhile, each archer of Conundrum Country earns 8 points with every arrow.
Which team is favored to win?
Extra credit: What is the probability that the team you identified as the favorite will win?

Solution
Let pw be the probability of Riddler Nation winning. Riddler Nation either wins the first time
with a probability of pwf or Riddler Nation draws with a probability of pd and then wins
with a probability pw. Therefore we have,

pw = pwf + pd · pw

=⇒ pw =
pwf

1− pd

Calculating probabilities
There are a couple of ways by which pwf and pd can be calculated.

One approach is to use brute-force enumeration of all the 33 3-tuples of the points earned
in each of the 3 shots and count the number of tuples whose sum is greater or equal to 24.
The Python code for counting the tuples is given below:

from itertools import product
sum([1 for p in product(*[[10,9,5]]*3) if sum(p) > 24])

The other approach is to use generating functions i.e the coefficient of x24 in (x10 + x9 +
x5)3 gives the count of the number of cases where the sum of the scores of the three shots is
24.

118

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Computational Solution
From the simulation below, we see that the Riddler Nation is favoured to win and the
probability of win is ≈ 0.524.

from random import random

def shot_pts_riddler():
p = random()
if p < 0.33333333:

return 10
elif p > 0.33333333 and p < 0.66666666:

return 9
else:

return 5

def shot_pts_conundrum():
return 8

def prob_win_riddler(runs=1000000):
total_wins = 0
for _ in range(runs):

pts_riddler, pts_conundrum = 0, 0
while pts_riddler == pts_conundrum:

pts_riddler = sum([shot_pts_riddler() for _ in range(3)])
pts_conundrum = sum([shot_pts_conundrum() for _ in range(3)])

if pts_riddler > pts_conundrum:
total_wins += 1

return total_wins/runs

print(prob_win_riddler())

Riddler Classic
Suppose you have a chain with infinitely many flat (i.e., one-dimensional) links. The first link
has length 1, and the length of each successive link is a fraction f of the previous link’s length.
As you might expect, f is less than 1. You place the chain flat on a table and some ink at the
very end of the chain (i.e., the end with the infinitesimal links).

Initially, the chain forms a straight line segment, and the longest link is fixed in place. From
there, the links are constrained to move in a very specific way: The angle between each chain
and the next, smaller link is always the same throughout the chain. For example, if the Nth

link and the N+ 1st link form a 40 degree clockwise angle, then so do the N+ 1st link and
the N+ 2nd link.

After you move the chain around as much as you can, what shape is drawn by the ink that
was at the tail end of the chain?

Solution
The lengths of the links in the chain for a geometric progression 1, f, f2,

Using the properties of complex numbers, the position pi for i ⩾ 2 of the end point of
each link in the chain can be represented as a complex function of θ (the angle between each
chain link measured anticlockwise). We have,

119

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

p1 = 1
p2(θ) = 1+ feiθ

...

pn(θ) = 1+ feiθ + · · ·+ fn−1e(n−1)iθ =

n−1∑
k=0

fkeikθ

p∞(θ) = 1
1− feiθ

=
1

1− f cos θ− if sin θ
If x and y are the coordinates of the end point of the last link in the chain, we have

x =
1− f cos θ

1+ f2 − 2f cos θ

y =
f sin θ

1+ f2 − 2f cos θ
Eliminating θ from the above using brute force, we get(

x−
1

1− f2

)2

+ y2 =

(
f

1− f2

)2

which is the equation of a circle centered at
(1
1−f2 , 0

)
and radius f

1−f2 .

Using Mobius transformation
The mapping 1

1−feiθ is a **Mobius Transformation** of eiθ a complex number on the unit
circle centered at the origin.
Here are a couple of fundamental results related to Mobius Transformations that we will

use:

• Mobius transformations map circles to circles.

• If two points symmetric with respect to a circle, then their images under a Mobius trans-
formation are symmetric to the image circle. This is called the "Symmetry Principle".

Two end points of a diameter (−1, 0) and (0, 1) of the unit circle get mapped to the two end
points 1

1+f
and 1

1−f
of a diameter of the mapped circle by the symmetry principle. Therefore

the centre of the mapped circle is at

1
2

(
1

1− f
+

1
1+ f

)
=

1
1− f2

The radius of the circle is given by

1
2

∣∣∣∣ (1
1− f

−
1

1+ f

) ∣∣∣∣ = f

1− f2

120

70 Can You Hop Across The Chess
Board?

Riddler Express
The following 8-by-8 grid is covered with a total of 64 chess pieces, with one piece on each
square. You should begin this puzzle at the white bishop on the green square. You can then
move from white piece to white piece via the following rules:

If you are on a pawn, move up one space diagonally (left or right).
If you are on a knight, move in an “L” shape — two spaces up, down, left or right, and then

one space in a perpendicular direction.
If you are on a bishop, move one space in any diagonal direction.
If you are on a rook, move one space up, down, left or right.
If you are on a queen, move one space in any direction (horizontal, vertical or diagonal).
Chess board with 64 pieces on it. From left to right in each row, and then top to bottom,

the pieces are (b = black, w = white):

For example, suppose your first move from the bishop is diagonally down and to the right.
Now you’re at a white rook, so your possible moves are left or up to a pawn or right to a
knight.

Your objective is to reach one of the four black kings on the grid. However, at no point can
you land on any of the other black pieces. (Knights are allowed to hop over the black pieces.)

What sequence of moves will allow you to reach a king?

Solution
Here is the Python code for solving the problem using directed graphs. Every square on the
chessboard is a node. All squares that are reachable from any given square subject to the
movement constraints of the piece on that square are neighbours of the given square. The
neighbours of a square are connected by directed edges whose source is the original square
and the destination is a neighbour. Given this representation, the above problem reduces to

121

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

finding a directed path in the graph from the source(i.e. the green square) to the destination
(i.e. one the sqares with a black king).
def moves(piece, i, j, size=8):

def is_valid(pos):
i,j = pos
return True if i >= 0 and i < size and j >= 0 and j < size else False

piece_moves = {
"p": [(i+1,j+1),(i-1,j+1)],
"b": [(i+1,j+1),(i-1,j+1),(i-1,j-1),(i+1,j-1)],
"r": [(i,j+1),(i-1,j),(i+1,j),(i,j-1)],
"h": [(i-1,j+2), (i+1,j+2), (i-1,j-2),(i+1,j-2),

(i-2,j-1), (i-2,j+1),(i+2,j-1),(i+2,j+1)],
"q": [(i,j+1),(i-1,j),(i+1,j),(i,j-1),(i+1,j+1),

(i-1,j+1),(i-1,j-1),(i+1,j-1)]
}
return list(filter(is_valid, piece_moves[piece]))

def paths(board, source, targets):
import networkx as nx
pieces = {}
for i, line in enumerate(reversed(board)):

for j, piece in enumerate(line):
pieces[(j,i)] = piece.strip()

G = nx.DiGraph()
for (i,j), piece in pieces.items():

if piece[0] == "w":
for move in moves(piece[1],i,j):

if pieces[move][0] == "w" or pieces[move] == "bk":
G.add_edge((i,j), move)

paths = []
for target in targets:

path = None
try:

path = nx.shortest_path(G, source, target)
except:

pass
if path:

paths.append(path)
return paths

board1 = [
["bk", "bb", "wb", "bb", "bk", "wr", "wb", "wr"],
["wh", "wr", "wh", "wh", "wp", "wh", "bk", "wb"],
["wr", "bp", "wh", "bh", "wp", "wr", "wp", "wr"],
["bp", "bb", "wp", "wr", "bh", "wh", "br", "bh"],
["wh", "wh", "wh", "wb", "br", "wb", "wr", "wb"],
["wq", "wr", "wh", "wp", "br", "wh", "wr", "wq"],
["bb", "br", "wr", "wp", "wb", "wp", "wb", "wq"],
["bk", "wb", "wq", "wh", "wp", "wr", "wh", "wh"]

]
print(paths(board1, (4,1), [(0,0),(0,7),(4,7),(6,6)]))

Riddler Classic
Today marks the beginning of the Summer Olympics! One of the brand-new events this year
is sport climbing, in which competitors try their hands (and feet) at lead climbing, speed
climbing and bouldering.

122

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Suppose the event’s organizers accidentally forgot to place all the climbing holds on and
had to do it last-minute for their 10-meter wall (the regulation height for the purposes of
this riddle). Climbers won’t have any trouble moving horizontally along the wall. However,
climbers can’t move between holds that are more than 1 meter apart vertically.
In a rush, the organizers place climbing holds randomly until there are no vertical gaps

between climbing holds (including the bottom and top of the wall). Once they are done
placing the holds, how many will there be on average (not including the bottom and top of
the wall)?

Extra credit: Now suppose climbers find it just as difficult to move horizontally as vertically,
meaning they can’t move between any two holds that are more than 1 meter apart in any
direction. Suppose also that the climbing wall is a 10-by-10 meter square. If the organizers
again place the holds randomly, how many have to be placed on average until it’s possible to
climb the wall?

Computational Solution 1
Start with an array [0,height = 10] and repeatedly add uniform random values from
U[0,height] to this array (while keeping it sorted) until all consecutive differences are
less than d = 1. Average length of the array across multiple runs gives us the average number
of holds that need to be placed. From the simulation below we see that the average number
of holds is ≈ 43.

from random import uniform

def avg_holds_1d(height, d, runs = 10000):
sum_hold_cnts = 0
for _ in range(runs):

holds = [0, height]
while any([holds[i+1] - holds[i] > d for i in range(len(holds)-1)]):

new_hold = uniform(0, height)
i = 0
while holds[i] < new_hold:

i += 1
holds.insert(i, new_hold)

sum_hold_cnts += len(holds)-2
return sum_hold_cnts/runs

print(avg_holds_1d(10.0,1.0))

123

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Computational Solution 2
The computational trick to increase the speed of simulation is to use the Union-Find algo-
rithm to keep track of all *climbable paths* (i.e. paths without any gaps) identified so far as
new holds are randomly added. When we find a climbable path that contains the top and
bottom holds, we stop the simulation run.

Using the simulation code below, we see that the average number of holds when there are
no vertical gaps greater than 1m is ≈ 43 and the average number of holds when there are no
gaps(in any direction) greater than 1m is ≈ 143.

from networkx.utils.union_find import UnionFind
from random import uniform
from math import sqrt

def dist(p1, p2):
return sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)

def vdist(p1, p2):
return abs(p1[1]-p2[1])

def avg_holds(height, d, climb_type="1d", runs = 1000):
dist_fun = vdist if climb_type == "1d" else dist
sum_holds_cnt = 0
for _ in range(runs):

holds, top, bot, cnt = {}, 1, 2, 2
holds[top], holds[bot] = (0,0), (0,height)
climbable_paths = UnionFind()
climbable_paths.union(top)
climbable_paths.union(bot)
while True:

cnt, new_hold = cnt+1, (uniform(0, height), uniform(0,height))
for i, hold in holds.items():

if i == top or i == bot:
if vdist(hold, new_hold) <= d:

climbable_paths.union(i, cnt)
elif dist_fun(hold, new_hold) <= d:

climbable_paths.union(i, cnt)
climbable_paths.union(cnt)
holds[cnt] = new_hold
if climbable_paths[top]==climbable_paths[bot]:

break
sum_holds_cnt += cnt-2

return sum_holds_cnt/runs

print(avg_holds(10, 1, "1d"))
print(avg_holds(10, 1, "2d"))

124

71 Can You Win The Penalty
Shootout?

Riddler Express
I have three dogs: Fatch, Fetch and Fitch. Yesterday, I found a brown 12-inch stick for them
to play with. I marked the top and bottom of the stick and then threw it for Fatch. Fatch, a
Dalmatian, bit it in a random spot — leaving a mark — and returned it to me. In her honor, I
painted the stick black from the top to the bite and white from the bottom to the bite.
I subsequently threw the stick for Fetch and then for Fitch, each of whom retrieved the

stick by biting a random spot. What is the probability that Fetch and Fitch both bit the same
color (i.e., both black or both white)?

Solution
The three bite marks can be permuted in 3! = 6 ways all of which are *equally* likely because
of symmetry. Out of the 6 permutations, there are 4 permutations where the bite marks of
Fitch and Fetch lie on one side of the bite mark of Fatch. Therefore, the probability that Fetch
and Fitch both bit the same color is 2/3.
From the simulation below, we see that the probability that Fetch and Fitch both bit the

same color is indeed 0.667.

from random import random

def prob(runs = 1000000):
succ_cnt = 0
for _ in range(runs):

fa, fe, fi = random(), random(), random()
if (fe < fa and fi < fa) or (fe > fa and fi > fa):

succ_cnt += 1
return succ_cnt/runs

print(prob())

Riddler Classic
Italy defeated England in a heartbreaking (for England) European Championship that came
down to a penalty shootout. In a shootout, teams alternate taking shots over the course of five
rounds. If, at any point, a team is guaranteed to have outscored its opponent after five rounds,
the shootout ends prematurely, even if each side has not yet taken five shots. If teams are tied
after five rounds, they continue one round at a time until one team scores and another misses.
If each player has a 70 percent chance of making any given penalty shot, then how many

total shots will be taken on average?

125

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Solution
From the simulation below, we see that the total shots taken on average is 10.47.

def avg_total_shots(p, runs = 1000000):
from random import random
shot = lambda p: 1 if random() < p else 0
def game_over(t1, t2, g1, g2):

return 1 if max(5-t1, 0) + g1 < g2 or max(5-t2, t1-t2) + g2 < g1 else 0

sum_ts = 0
for _ in range(runs):

t1, t2, g1, g2 = 0, 0, 0, 0
while True:

t1, g1 = t1 + 1, g1 + shot(p)
if game_over(t1, t2, g1, g2):

break
t2, g2 = t2 + 1, g2 + shot(p)
if game_over(t1, t2, g1, g2):

break
sum_ts += t1+t2

return sum_ts/runs

print(avg_total_shots(0.7))

126

72 Can You Solve This
Astronomical Enigma?

Riddler Express
Earlier this year, a new generation of Brood X cicadas had emerged in many parts of the U.S.
This particular brood emerges every 17 years, while some other cicada broods emerge every
13 years. Both 13 and 17 are prime numbers — and relatively prime with one another — which
means these broods are rarely in phase with other predators or each other. In fact, cicadas
following a 13-year cycle and cicadas following a 17-year cycle will only emerge in the same
season once every 221 (i.e., 13 times 17) years!
Now, suppose there are two broods of cicadas, with periods of A and B years, that have

just emerged in the same season. However, these two broods can also interfere with each
other one year after they emerge due to a resulting lack of available food. For example, if A is
5 and B is 7, then B’s emergence in year 14 (i.e., 2 times 7) means that when A emerges in
year 15 (i.e., 3 times 5) there won’t be enough food to go around.

If bothA and B are relatively prime and are both less than or equal to 20, what is the longest
stretch these two broods can go without interfering with one another’s cycle? (Remember,
both broods just emerged this year.) For example, if A is 5 and B is 7, then the interference
would occur in year 15.

Solution
Using the code below, we see that the longest stretch the two broods can go without interfering
with one another’s cycle is 153.

from math import gcd

def max_non_intf(n):
def min_non_intf(a,b):

for x in range(0, a*b+1, a):
for y in range(0, a*b+1, b):

if abs(x-y)==1:
return max(x,y)

valid_tuples = [(a, b) for a in range(1, n) for b in range(a, n+1)
if gcd(a,b) == 1]

return max([min_non_intf(a,b) for a,b in valid_tuples])

print(max_non_intf(20))

Riddler Classic
The astronomers of Planet Xiddler are back!

This time, they have identified three planets that circularly orbit a neighboring star. Planet
A is three astronomical units away from its star and completes its orbit in three years. Planet
B is four astronomical units away from the star and completes its orbit in four years. Finally,

127

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Planet C is five astronomical units away from the star and completes its orbit in five years.
They report their findings to Xiddler’s Grand Minister, along with the auspicious news that
all three planets are currently lined up (i.e., they are collinear) with their star. However, the
Grand Minister is far more interested in the three planets than the star and wants to know
how long it will be until the planets are next aligned.
How many years will it be until the three planets are again collinear (not necessarily

including the star)?

Solution
Let r1, r2, r3 andω1,ω2,ω3 be the radii and the angular velocities of the three planets. The
cartesian coordinates of the planets are (ri cosωit, ri sinωit) where i ∈ {1, 2, 3}. When the
three planets are **collinear** then∣∣∣∣∣∣

r1 cosω1t r1 sinω1t 1
r2 cosω2t r2 sinω2t 1
r3 cosω3t r3 sinω3t 1

∣∣∣∣∣∣ = 0

For,

(r1,ω1) = (3, 2π/3)
(r2,ω2) = (4, 2π/4)
(r3,ω3) = (5, 2π/5)

the above determinant reduces to

15 sin 4πt
15 − 12 sin πt

6 − 20 sin πt

10 = 0

Solving the above equation numerically for t, we get the time period until the three planets
are collinear next to be 7.766 years.

The Python code for numerically solving the above equation and plotting the positions of
the three planets is given below.

from scipy.optimize import fsolve
from math import sin, cos, pi
import numpy as np
import matplotlib.pyplot as plt

def polToCart(r, w, t):
return (r*cos(w*t), r*sin(w*t))

def circle(radius):
angle = np.linspace(0, 2*np.pi, 150)
x = radius*np.cos(angle)
y = radius*np.sin(angle)
return (x,y)

planets_r_w = [(3, 2*pi/3), (4, 2*pi/4), (5, 2*pi/5)]

def planetsPositions():
def func(x):

return [15.0*sin(4*pi*x/15.0)-20.0*sin(pi*x/10.0)-12.0*sin(pi*x/6.0)]
root = fsolve(func, [10.0])

128

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

return [polToCart(r, w, root[0]) for r, w in planets_r_w]

def plotPlanetsPositions(planets_xy):
figure, axes = plt.subplots(1)
axes.set_xlim([-5, 5])
axes.set_ylim([-5, 5])
axes.set_aspect(1)
axes.scatter([0], [0], color='red')

for r,_ in planets_r_w:
axes.plot(*circle(r))

planets_x, planets_y = list(zip(*planets_xy))
axes.scatter(planets_x, planets_y, color=['blue', 'orange', 'green'])
plt.show()

plotPlanetsPositions(planetsPositions())

The diagram below shows the positions of the planets when they are collinear next.

129

73 Can You Decipher The Secret
Message?

Riddler Express
Max the Mathemagician is calling for volunteers. He has a magic wand of length 10 that can
be broken anywhere along its length (fractional and decimal lengths are allowed). After the
volunteer chooses these breakpoints, Max will multiply the lengths of the resulting pieces.
For example, if they break the wand near its midpoint and nowhere else, the resulting product
is 5Ö5, or 25. If the product is the largest possible, they will win a free backstage pass to his
next show. (Amazing, right?)
You raise your hand to volunteer, and you and Max briefly make eye contact. As he calls

you up to the stage, you know you have this in the bag. What is the maximum product you
can achieve?
Extra credit: Zax the Mathemagician (no relation to Max) has the same routine in his

show, only the wand has a length of 100. What is the maximum product now?

Solution
Let L be the length of the wand and let x1, x2, . . . , xn be the lengths of the n resulting pieces
after the volunteer chooses the breakpoints. Using the famous **Arithmetic-Geometric mean
inequality** AM ⩾ GM, we have

x1 + · · ·+ xn

n
⩾ (x1x2 · · · xn)1/n

=⇒
(
L

n

)n

⩾ x1x2 · · · xn

The equality is achieved when all the pieces are equal.
The function f(x) =

(
L
x

)x attains its maximum value at x = L
e . This can be verified using

basic calculus.
As the wand can only be broken into an integral number of pieces, the maximum product

is obtained at n∗ =
⌊
L
e

⌋
or n∗ =

⌈
L
e

⌉
.

The number of equal pieces required to achieve the maximum product when L = 10 is
n∗ =

⌈ 10
e

⌉
= 4 and the maximum product that can be achieved is (10/4)4 = 39.0625.

The number of equal pieces required to achieve the maximum product when L = 100
is n∗ =

⌈ 100
e

⌉
= 37 and the maximum product that can be achieved is (100/37)37 ≈

9474061716781824.

Riddler Classic
This week’s Classic comes courtesy of Alexander Zhang of Lynbrook High School, California.
Alexander won first place in the mathematics category at this year’s International Science
and Engineering Fair for his work at the intersection of topology and medicine. He developed
his own highly efficient algorithms to detect and remove defects (like “handles” or “tunnels”)

130

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

from three-dimensional scans (e.g., MRI). Alexander has long had an interest in topology,
which just might be related to his submitted puzzle.

Consider the following image showing a particular uppercase sans serif font:

Alexander thinks many of these letters are equivalent, but he leaves it to you to figure out
how and why. He also has a message for you:

It may not look like much, but Alexander assures me that it is equivalent to exactly one
word in the English language.

What is Alexander’s message?

Solution

Partitioning scheme 1
If alphabets are partitioned into equivalence classes such that two alphabets are in the
same class when one can be **continuously deformed** into another, we have the following
equivalence classes:

1 continous line - C,G,I,J,M,N,S,U,V,W,Z
1 hole with 1 dead end - P,Q
1 hole with 2 dead ends - A,R
2 holes - B
1 hole - D,O
3 dead ends - E,F,T,Y
4 dead ends - H,K,X

Partitioning scheme 2
If alphabets are partitioned into equivalence classes based on the number of **non-overlapping
continous strokes**, we have the following three equivalence classes:

1 continuous stroke - C,D,G,I,J,L,M,N,O,P,Q,S,U,V,W,Z
2 non-overlapping continuous strokes - A,B,E,F,R,T,X,Y
3 non-overlapping continuous strokes - H,K

Using the code below, we see that **YIRTHA** can be decoded as **EUREKA** under
partitioning scheme 1. Under paritioning scheme 2, **YIRTHA** can be decoded as *APATHY*,
TWEAKY or *EUREKA*.

131

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

import urllib.request
DICT_URL = "https://norvig.com/ngrams/enable1.txt"

def load_dictionary(url):
response = urllib.request.urlopen(url)
return [l.decode('utf-8').strip().upper() for l in response.readlines()]

ALL_WORDS = load_dictionary(DICT_URL)

target_word = "YIRTHA"
relevant_words = [w for w in ALL_WORDS if len(w)==len(target_word)]
scheme1 = ['AR','B','CGIJMNSUVWZ','DO','EFTY','HKX','PQ']
scheme2 = ['ABEFRTXY','CDGIJLMNOPQSUVWZ','HK']

def decode(grouping):
target_subgroups = []
for l in target_word:

for sg in grouping:
if l in sg:

target_subgroups.append(sg)
matches = set()
for word in relevant_words:

if all([c in sg for c, sg in zip(word, target_subgroups)]):
matches.add(word)

return matches

print(decode(scheme1))
print(decode(scheme2))

132

74 Can You Crack The Case Of The
Crystal Key?

Riddler Classic
Dakota Jones is back in action! To gain access to a hidden temple deep in the Riddlerian
Jungle, she needs a crystal key.
She already knows the crystal is a polyhedron. And according to an ancient text, it has

exactly six edges, five of which are 1 inch long. Cryptically, the text does not specify the
length of the sixth edge. Instead, it says that the key is the largest such polyhedron (i.e., with
six edges, five of which have length 1) by volume.

Once again, Dakota Jones needs your help. What is the volume of the crystal key?

Solution 1
Given the distances between the vertices of a tetrahedron the volume can be computed using
the **Cayley–Menger determinant**:

288 · V2 =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 d2

12 d2
13 d2

14
1 d2

12 0 d2
23 d2

24
1 d2

13 d2
23 0 d2

34
1 d2

14 d2
24 d2

34 0

∣∣∣∣∣∣∣∣∣∣
where the subscripts i, j ∈

1, 2, 3, 4 represent the vertices and dij is the pairwise distance between them – i.e., the length
of the edge connecting the two vertices.

If a, b, c be the three edges that meet at a point, and x,y, z the opposite edges. The volume
V of the tetrahedron is given by

V =

√
4a2b2c2 − a2X2 − b2Y2 − c2Z2 + XYZ

12
where

X = b2 + c2 − x2

Y = a2 + c2 − y2

Z = a2 + b2 − z2

In our case, let a = b = c = y = z = 1, we have

X = 2− x2

Y = 1
Z = 1

We need to find the value of x that maximizes

133

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

V =

√
4− (2− x2)2 − 1− 1+ (2− x2)

12 =
x
√
−x2 + 3
12

V attains the maximum value of 1
8 when x =

√
3
2 .

Solution 2
A polyhedron with 6 edges has to be a tetrahedron. In this particular case, we have a
tetrahedron where two faces are equilateral triangles of side length 1 which share a common
edge. The volume of tetrahedron (which is a triangular pyramidwhere the base is an equilateral
triangle) is given by

Vol =
1
3 × base× height

=
1
3 ×

√
3
4 × height

The volume is maximized when the height is maximized i.e. when the second equilateral
triangular face which shares an edge with the base is perpendicular to the base. The height of
an equilateral triangle of side 1 is

√
3
2 .

Therefore the volume of the crystal key is

Volmax =
1
3 ×

√
3
4 ×

√
3
2 =

1
8

References
Wikipedia-Tetrahedron

134

https://en.wikipedia.org/wiki/Tetrahedron

75 No Isosceles Triangles For You!

Riddler Classic
This week’s Classic is being served up by Jordan Ellenberg, whose new book, “Shape,” goes
on sale on May 25.

One of the many geometers who appears in “Shape” is the great Paul Erdős. In 1946, Erdős
himself posed a riddle about what are called “isosceles sets”: How many points can you place
in d-dimensional space such that any three of them form an isosceles triangle?
In two dimensions, the largest isosceles set has exactly six points, with five forming the

vertices of a regular pentagon and the sixth point in the middle. In three dimensions, the
largest isosceles set has eight points; in four dimensions, the largest set has 11 points. And in
dimensions higher than eight, no one knows what the largest isosceles sets might be!
But this week, Jordan is asking about what he calls anti-isosceles sets. Consider a NÖN

grid of points. What is the greatest subset of theseN2 points such that no three of them form
an isosceles triangle? (Note: Degenerate triangles, or triangles with zero area, do count as
triangles here, as long as their three vertices are distinct.)

How many points are in the largest anti-isosceles set for a 4Ö4 grid?
Extra credit: What about a 5× 5 grid, a 6× 6 grid, or even larger square grids? Can you

find an expression (or bounds) for the size of the largest anti-isosceles set for the general
N×N grid? (If you figure out anything about the general case, Jordan would love to hear
about it!)

Solution
from itertools import product, combinations
from copy import deepcopy

def isoceles(t):
def d(p1, p2):

return (p1[0]-p2[0])**2 + (p1[1]-p2[1])**2
d1, d2, d3 = d(t[0], t[1]), d(t[1], t[2]), d(t[2], t[0])
if d1 == d2 or d2 == d3 or d3 == d1:

return True
else:

return False

n = 5
grid = product(*[range(n)]*2)
max_size = 6
cur_size = max_size + 1
max_pts_set = []
while True:

cur_size_largest = False
pts_set = []
for pts in combinations(grid, cur_size):

if all([not isoceles(t) for t in combinations(pts, 3)]):
cur_size_largest = True
pts_set.append(pts)

if not cur_size_largest:

135

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

break
else:

max_size = cur_size
cur_size += 1
max_pts_set = deepcopy(pts_set)

print(max_size, max_pts_set)

Figure 75.1: Anti-isoceles sets for 4× 4 grid

136

76 Can You Systematically Solve A
Friday Crossword?

Riddler Express
You’re playing a game of cornhole with your friends, and it’s your turn to toss the four bean
bags. For every bean bag you toss onto your opponents’ board, you get 1 point. For every bag
that goes through the hole on their board, you get 3 points. And for any bags that don’t land
on the board or through the hole, you get 0 points.

Your opponents had a terrible round, missing the board with all their throws. Meanwhile,
your team currently has 18 points — just 3 points away from victory at 21. You’re also playing
with a special house rule: To win, you must score exactly 21 points, without going over.

Based on your history, you know there are three kinds of throws you can make:

• An aggressive throw, which has a 40 percent chance of going in the hole, a 30 percent
chance of landing on the board and a 30 percent chance of missing the board and hole.

• A conservative throw, which has a 10 percent chance of going in the hole, an 80
percent chance of landing on the board and a 10 percent chance of missing the board
and hole.

• A wasted throw, which has a 100 percent chance of missing the board and hole.

For each bean bag, you can choose any of these three throws. Your goal is to maximize
your chances of scoring exactly 3 points with your four tosses. What is the probability that
your team will finish the round with exactly 21 points and declare victory?

Solution
Let us consider the general case of an N-throw game, and let the state be the *number of
points*. The optimal probability Pk(xk) at the start of the kth throw as a function of the
number of points xk is given by the dynamic programming recursion

Pk(xk) = max[ahPk+1(xk + 3) + abPk+1(xk + 1) + amPk+1(xk),
chPk+1(xk + 3) + cbPk+1(xk + 1) + cmPk+1(xk),
Pk+1(xk)]

where ah,ab,am and ch, cb, cm are the probabilities of a throw landing in the hole, on
the board and missing the board under *aggressive* and *conservative* throws.

The maximum above is taken over the three possible decisions:

• Aggressive throw, which keeps the score at xk with probability am, changes it to xk+ 3
with probability ah and xk + 1 with probability ab.

• Conservative throw, which keeps the score at xk with probability cm, changes it to
xk + 3 with probability ch and xk + 1 with probability cb.

137

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

• Wasted throw, which keeps the score at xk with probability 1.

The required probability is obtained by calculating P1(0) given N = 4 and the following
terminal conditions:

P4(0) = 0.4
P4(1) = 0
P4(2) = 0.8
P4(3) = 1

From the code below, the probability that the team will finish the round with exactly 21
points and declare victory is 85.48%.

Computational solution

138

77 Can You Cut The Perfect
Pancake?

Riddler Classic
Riddler Nation’s neighbor to the west, Enigmerica, is holding an election between two
candidates, A and B. Assume every person in Enigmerica votes randomly and independently,
and that the number of voters is very, very large. Moreover, due to health precautions, 20
percent of the population decides to vote early by mail.
On election night, the results of the 80 percent who voted on Election Day are reported

out. Over the next several days, the remaining 20 percent of the votes are then tallied.
What is the probability that the candidate who had fewer votes tallied on election night

ultimately wins the race?

Solution
The probability that the candidate who had fewer votes tallied on election night ultimately
wins the race is approximately 14.82.

using Distributions
runs = 100000
frac_day = 0.8
frac_mail = 1 - frac_day
num_total = 1000000
num_day, num_mail = trunc(Int32, frac_day*num_total), trunc(Int32, frac_mail*num_total)
succ = 0
for i in 1:runs

votes = rand(Bernoulli(0.5), num_total)
if sum(votes[1:num_day]) < 0.5*num_day && sum(votes) > 0.5*num_total

succ += 1
end

end
print(2*succ/runs)

139

78 Can You Crack The Case Of The
Crescent Moon?

Riddler Express
You are creating a variation of a Romulan pixmit deck. Each card is an equilateral triangle,
with one of the digits 0 through 9 (written in Romulan, of course) at the base of each side of
the card. No number appears more than once on each card. Furthermore, every card in the
deck is unique, meaning no card can be rotated so that it matches (i.e., can be superimposed
on) any other card.

What is the greatest number of cards your pixmit deck can have?
Extra credit: Suppose you allow numbers to appear two or three times on a given card.

Once again, no card can be rotated so that it matches any other card. Now what is the greatest
number of cards your pixmit deck can have?

Solution
The number of ways of choosing 3 distinct digits from the 10 digits for each card is

(10
3

)
.Once

three digits have been chosen for a card, they can be permuted in 3! = 6 ways. These 6
permutations can be grouped into two equivalence classes of three permutations each such
that the permutations in each class are rotations of other permutations in that class. Therefore,
the greatest number of cards in the deck is 2

(10
3

)
= 240.

Extra credit
Case 1: When a digit can be repeated thrice in each card.

We choose one digit for each card and this can be done in 10 ways.
Case 2: When two digits are chosen for each card and one of them is repeated twice.
Number of ways of choosing 2 digits from 10 digits is

(10
2

)
. Once two digits have chosen for

a card, there is only one way of assigning digits to each side of the card (ignoring rotations).
Therefore, the number of cards in this case is 2

(10
2

)
.

The greatest number of cards in the deck after allowing the digits to be repeated is 240+
10+ 90 = 340.

140

79 Can You Navigate The One-Way
Streets?

Riddler Express
You have two 16-ounce cups — cup A and cup B. Both cups initially have 8 ounces of water in
them. You take half of the water in cup A and pour it into cup B. Then, you take half of the
water in cup B and pour it back into cup A. You do this again. And again. And again. And
then many, many, many more times — always pouring half the contents of A into B, and then
half of B back into A. When you finally pause for a breather, what fraction of the total water
is in cup A?

Extra credit: Now suppose both cups initially have somewhere between 0 and 8 ounces of
water in them. You don’t know the precise amount in each cup, but you know that both cups
are not empty. Again, you pour half the water from cup A into cup B, and then half from
cup B back to A. You do this many, many times. When you again finally pause for a breather,
what fraction of the total water is in cup A?

Solution
The fraction of the total water in Cup A is always 2

3 .

function fracA(a, b)
for i in 1:1000000

a = a/2
b += a
b = b/2
a += b

end
(a, b, a/(a+b))

end

println(fracA(8,8))
println(fracA(8*(1-rand()),8*(1-rand())))

Riddler Classic
In Riddler City, all the streets are currently two-way streets. But in an effort to make the
metropolis friendlier for pedestrians and cyclists, the mayor has decreed that all streets should
be one-way. Meanwhile, the civil engineer overseeing this transition is not particularly
invested in the project and will be randomly assigning every block of each street a random
direction.
For your daily commute to work, you drive a car two blocks east and two blocks south,

as shown in the diagram below. What is the probability that, after each block is randomly
assigned a one-way direction, there will still be a way for you to commute to work while
staying within this two-by-two block region (i.e., sticking to the 12 streets you see in the
diagram)? Here is one such arrangement of one-way streets that lets you commute to work:

141

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Solution
The probability that, after each block is randomly assigned a one-way direction, there will
still be a way for you to commute to work while staying within this two-by-two block region
is 0.277. The probability of being able to perform a round trip is 0.0415.

using LightGraphs
import Base.Iterators: product

road_combs = product([(1,2),(2,1)],[(2,3),(3,2)],[(1,4),(4,1)],
[(2,5),(5,2)],[(3,6),(6,3)],[(4,5),(5,4)],
[(5,6),(6,5)],[(4,7),(7,4)],[(7,8),(8,7)],
[(5,8),(8,5)],[(6,9),(9,6)],[(8,9),(9,8)])

cnt, succ, succ_rt = 0, 0, 0
for roads in road_combs

g = SimpleDiGraph(9)
for i in 1:12

add_edge!(g, roads[i][1], roads[i][2])
end
cnt +=1
if has_path(g, 1, 9)

succ += 1
if has_path(g, 9, 1)

succ_rt += 1
end

end
end
println(succ/cnt,"\t", succ_rt/cnt)

142

80 Can You Find An Extra Perfect
Square?

Riddler Express

The two larger squares are congruent, and the smaller square makes a 45 degree angle with
one of the larger squares. Both larger squares touch the circle at one corner, while the smaller
square touches the circle at two corners.

How many times greater is the area of one of the larger squares than the area of the smaller
square?

Solution
Let O be the center of the circle, x be the length of the side of the larger square and y be the
length of the side of the smaller square.

We have the following equations:

OE = BC/2 = 1
2(x+

y√
2
)BE = xAF = BE−

y√
2
OF = OE+

y√
2
OA = OBOA2 = OF2+AF2OB2 = OE2+BE2

From the above, we have

−
y2

2 + 2x y√
2
=

y2

2 + 212(x+
y√
2
)
y√
2

=⇒ x

y
=

3√
2

=⇒ x2

y2 =
9
2

143

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Riddler Classic
For some perfect squares, when you remove the last digit, you get another perfect square. For
example, when you remove the last digit from 256(162), you get 25(52).

The first few squares for which this happens are 16, 49, 169, 256 and 361. What are the next
three squares for which you can remove the last digit and get a different perfect square? How
many more can you find?

Extra credit: In the list above, 169(132) is a little different from the other numbers. Not only
when you remove the last digit do you get a perfect square, 16(42), but when you remove the
last two digits, you again get a perfect square: 1(12). Can you find another square with both
of these properties?

Solution
Three more perfect squares that satisfy the conditions of the problem are 1444, 3249 and
18496.

from math import sqrt
cnt = 1
for i in range(20, 1000):

if cnt <= 3 and sqrt(int(str(i*i)[:-1])).is_integer():
print(i*i)
cnt += 1

144

81 Can You Bake The Biggest Pie?

Riddler Classic
This Sunday, March 14, is Pi Day! To celebrate, you are planning to bake a pie. You have
a sheet of crust laid out in front of you. After baking, your pie crust will be a cylinder of
uniform thickness (or rather, thinness) with delicious filling inside.
To maximize the volume of your pie, what fraction of your crust should you use to make

the circular base (i.e., the bottom) of the pie?

Solution
Assuming we use the entire sheet of crust without wasting to create the hollow cylinder
with uniform thickness. We need to maximize the volume πr2h subject to the constraint
2πrh+ 2πr2 is constant.

We have the Lagrangian,

L(r,h) = πr2h− λ(2πrh+ 2πr2 − k) (81.1)

Taking the partial derivatives of the Lagrangian w.r.t h and r and setting them to 0, we
have

∂L(r,h)
∂r

= 2πrh− λ(2πh+ 4πr) = 0 (81.2)

∂L(r,h)
∂h

= πr2 − 2λπr = 0 (81.3)

Solving the above simultaneous equations, we have

λ =
r

2 (81.4)

h = 2r (81.5)

The fraction of the crust that should be used to make the circular base so as to maximize
the volume of the pie is πr2

2πrh+2πr2 =
1
6 .

145

82 Can You Bat .299 In 299 Games?

Riddler Express
You have three coins in your pocket, each of which can be a penny, nickel, dime or quarter
with equal probability. You might have three different coins, three of the same coin or two
coins that are the same and one that is different.
Each of these coins can buy you a string whose length in centimeters equals the value

of the coin in cents, i.e., the penny buys 1 cm of string, the nickel buys 5 cm of string, etc.
After purchasing your three lengths of string, what is the probability that they can be the
side lengths of a triangle?

Solution 1
We first look at all possible combinations of three coins. As all the combinations are equally
likely, we divide the number of combinations where the three coin values form a triangle by
the total number of combinations. The probability that the purchased strings can be the side
lengths of a triangle is 0.34375.

from itertools import product

coins = [1,5,10,25]
succ = 0
coin_combs = list(product(*[coins]*3))
for x,y,z in coin_combs:

if x + y > z and x + z > y and y + z > x:
succ += 1

print(succ/len(coin_combs))

Solution 2
For each run of the Monte Carlo simulation, we choose 3 coins randomly with replacement
from the set {1, 5, 10, 25} and check if a triangle can be formed with the coin values. The
average count of successes is the probability that the purchased strings can be the side lengths
of a triangle. The probability based on the simulation below is 0.343.

from random import choices

coins = [1,5,10,25]
runs = 100000
succ = 0
for _ in range(runs):

x,y,z = choices(coins, k=3)
if x + y > z and x + z > y and y + z > x:

succ += 1
print(succ/runs)

146

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

Riddler Classic
Suppose a baseball player has four at-bats per game (not including walks), so their batting
average is the number of hits they got divided by four times the number of games they played.
For many games, it’s possible to have a corresponding batting average that, when rounded to
three digits, equals the number of games divided by 1, 000. For example, if a player typically
gets one hit per game in their at-bats, then they could very well have a .250 average over 250
games.
What is the greatest number of games for which it is not possible to have a matching

rounded batting average? Again, assume four at-bats per game.

Solution
As per the code below, the number of games for which it is not possible to have a matching
rounding batting average is 239.

for g in range(1000, 1, -1):
if all([round(h/(4*g),3) != g/1000 for h in range(0, 4*g+1)]):

break
print(g)

147

83 HowMany Ways Can You Build
A Staircase?

Riddler Express
This is the fourth and final week of CrossProduct™ puzzles — for now. This time, there are
four four-digit numbers — each belongs in a row of the table below, with one digit per cell. The
products of the four digits of each number are shown in the rightmost column. Meanwhile,
the products of the digits in the thousands, hundreds, tens and ones places, respectively, are
shown in the bottom row. Can you find all four four-digit
numbers and complete the table?

Solution
from z3 import *

class MysteriousNumbersSolver:
def __init__(self):

self.X = [[Int("self.X_%s_%s" % (i, j)) for j in range(4)]
for i in range(4)]

self.s = Solver()
self.s.add([And(0 <= self.X[i][j], self.X[i][j]<= 9) for i in range(4) for j in range(1,4)])
self.s.add([And(0 <= self.X[i][0], self.X[i][0]<= 9) for i in range(4)])

def set_constraints(self):
self.s.add(self.X[0][0]*self.X[0][1]*self.X[0][2]*self.X[0][3]==1458)
self.s.add(self.X[1][0]*self.X[1][1]*self.X[1][2]*self.X[1][3]==128)
self.s.add(self.X[2][0]*self.X[2][1]*self.X[2][2]*self.X[2][3]==2688)
self.s.add(self.X[3][0]*self.X[3][1]*self.X[3][2]*self.X[3][3]==125)
self.s.add(self.X[0][0]*self.X[1][0]*self.X[2][0]*self.X[3][0]==960)
self.s.add(self.X[0][1]*self.X[1][1]*self.X[2][1]*self.X[3][1]==384)
self.s.add(self.X[0][2]*self.X[1][2]*self.X[2][2]*self.X[3][2]==630)
self.s.add(self.X[0][3]*self.X[1][3]*self.X[2][3]*self.X[3][3]==270)

def output_solution(self):
m = self.s.model()
for i in range(4):

print(" ".join([str(m.evaluate(self.X[i][j])) for j in range(4)]))

def solve(self):
self.set_constraints()
if self.s.check() == sat:

self.output_solution()
else:

print(self.s)
print("Failed to solve.")

s = MysteriousNumbersSolver()
s.solve()

Here is the solution:

148

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

3 6 9 9
8 8 2 1
8 8 7 6
5 1 5 5

Riddler Classic
You have 10 blocks with which to build four steps against a wall. The first step is one block
high, the second is two blocks high, the third is three blocks high and the fourth is four blocks
high.

However, the ground ever-so-slightly slopes down toward the wall, and both the floor and
the blocks are a little bit slippery. As a result, whenever you place a block at ground level, it
slides toward the wall until it hits the wall or another block. And when you place a block atop
another block, it will similarly slide toward the wall until it hits the wall or another block.

Suppose the four blocks in the bottom row are labeled A, the three blocks in the second row
are labeled B, the two blocks in the next row are labeled C and the topmost block is labeled D.
One way to build the steps would be to place the blocks in the following order, one row at a
time: A-A-A-A-B-B-B-C-C-D. You could alternatively place the blocks one column at a time:
A-B-C-D-A-B-C-A-B-A. But you could not place them in the order A-B-B-A-A-A-B-C-C-D
because that would mean at one point you have more blocks in the second row, B, than in the
bottom row, A — a physical impossibility!

How many distinct ways are there to build these four steps using the 10 blocks?
Extra credit: Suppose you have precisely enough blocks to build a staircase with N stairs.

How many distinct ways are there to build this staircase?

Solution
Here is a brute force computational solution which gives 768 ways to build the staircase with
4 steps and 10 blocks.

from itertools import permutations

def valid_block_seqs(n):
blocks = [(i,j) for i in range(1,n+2) for j in range(1, n-i+2)]
sequences = []
for seq in permutations(blocks[1:]):

used = set([(1,1)] + [(0,i) for i in range(1, n+1)] + [(i,0) for i in range(1,n+1)])
for (x,y) in seq:

if (x-1, y) in used and (x, y-1) in used:
used.add((x, y))

else:
break

if len(used) == len(blocks) + 2*n:
sequences.append([(1,1)] + list(seq))

return sequences

print(len(valid_block_seqs(4)))

149

84 Can You Win Riddler Jenga?

Riddler Express
This time, there are seven three-digit numbers — each belongs in a row of the table below,
with one digit per cell. The products of the three digits of each number are shown in the
rightmost column. Meanwhile, the products of the digits in the hundreds, tens and ones
places, respectively, are shown in the bottom row.

Can you find all seven three-digit numbers and complete the table?

Solution
from z3 import *

class MysteriousNumbersSolver:
def __init__(self):

self.X = [[Int("self.X_%s_%s" % (i, j)) for j in range(3)]
for i in range(7)]

self.s = Solver()
self.s.add([And(0 <= self.X[i][j], self.X[i][j]<= 9) for i in range(6) for j in range(1,3)])
self.s.add([And(0 <= self.X[i][0], self.X[i][0]<= 9) for i in range(6)])

def set_constraints(self):
self.s.add(self.X[0][0]*self.X[0][1]*self.X[0][2]==280)
self.s.add(self.X[1][0]*self.X[1][1]*self.X[1][2]==168)
self.s.add(self.X[2][0]*self.X[2][1]*self.X[2][2]==162)
self.s.add(self.X[3][0]*self.X[3][1]*self.X[3][2]==360)
self.s.add(self.X[4][0]*self.X[4][1]*self.X[4][2]==60)
self.s.add(self.X[5][0]*self.X[5][1]*self.X[5][2]==256)
self.s.add(self.X[6][0]*self.X[6][1]*self.X[6][2]==126)
self.s.add(self.X[0][0]*self.X[1][0]*self.X[2][0]*self.X[3][0]*self.X[4][0]*self.X[5][0]*self.X[6][0]==183708)
self.s.add(self.X[0][1]*self.X[1][1]*self.X[2][1]*self.X[3][1]*self.X[4][1]*self.X[5][1]*self.X[6][1]==245760)
self.s.add(self.X[0][2]*self.X[1][2]*self.X[2][2]*self.X[3][2]*self.X[4][2]*self.X[5][2]*self.X[6][2]==117600)

def output_solution(self):
m = self.s.model()
for i in range(7):

print(" ".join([str(m.evaluate(self.X[i][j])) for j in range(3)]))

150

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

def solve(self):
self.set_constraints()
if self.s.check() == sat:

self.output_solution()
else:

print(self.s)
print("Failed to solve.")

s = MysteriousNumbersSolver()
s.solve()

Here is the solution:

7 8 5
3 8 7
9 6 3
9 8 5
3 5 4
4 8 8
9 2 7

Riddler Classic
In the game of Jenga, you build a tower and then remove its blocks, one at a time, until the
tower collapses. But in Riddler Jenga, you start with one block and then place more blocks on
top of it, one at a time.

All the blocks have the same alignment (e.g., east-west). Importantly, whenever you place
a block, its center is picked randomly along the block directly beneath it. On average, how
many blocks must you place so that your tower collapses — that is, until at least one block
falls off?

(Note: This problem is not asking for the average height of the tower after any unbalanced
blocks have fallen off. It is asking for the average number of blocks added in order to make
the tower collapse in the first place.)

Solution
The key observation is that at some point when the next jenga block is placed on top of
the current *stable* set of blocks, you get a *composite block* (comprising of two or more
contiguous blocks from the top) such that the x-coordinate of its center of mass lies outside of
the *base*, i.e. falls outside of the block just below the composite block. The resulting torque
topples *all* the blocks which are a part of the composite block. As per the simulation below,
the average number of blocks that one must place in the tower such that atleast one block
falls of is 7.1.

from random import uniform

runs = 100000
total_len = 0
for _ in range(runs):

run_len = 1
centers = [0]
brk = False

151

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

while True:
centers.append(centers[-1] + uniform(-1,1))
run_len += 1
for i in range(run_len-1, 0, -1):

cm_block = sum(centers[i-run_len:])/(run_len-i)
if cm_block < centers[i-1]-1 or cm_block > centers[i-1]+1:

total_len += run_len
brk = True
break

if brk:
break

print(total_len/runs)

152

85 Can you find the luckiest coin?

Riddler Express
It’s time for a random number duel! You and I will both use random number generators,
which should give you random real numbers between 0 and 1. Whoever’s number is greater
wins the duel!

There’s just one problem. I’ve hacked your random number generator. Instead of giving
you a random number between 0 and 1, it gives you a random number between 0.1 and 0.8.

What are your chances of winning the duel?

Solution
The random generator that I have generates numbers according to X ∼ U[a,b] where 0 ⩽
a ⩽ b ⩽ 1 and the random generator that you have (in the general case) generates numbers
according to Y ∼ U[0, 1]. We need the probability, P[X < Y]. This is given by the area of the
trapezium EFGH divided by the area of the rectangle EFIJ. We have |EF| = |IJ| = b − a,
|FG| = b, |EH| = a and |EJ| = 1 in the figure below

P[X < Y] =
1
2(b− a)(b+ a)

(b− a)
=

b+ a

2 .

In our particular case a = 0.1 and b = 0.8, therefore the probability of me winning is 0.45.

Computational validation
The probability of me winning the duel as per the simulation below is 0.45 which validates
the result we got earlier.

153

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

from numpy.random import uniform

def prob_win(p1l, p1h, p2l, p2h, runs = 1000000):
total_wins = 0
for _ in range(runs):

x, y = uniform(p1l, p1h), uniform(p2l, p2h)
if x > y:

total_wins += 1
return total_wins/runs

print(prob_win(0.1,0.8,0,1))

Riddler Classic
I have in my possession 1 million fair coins. Before you ask, these are not legal tender. Among
these, I want to find the “luckiest” coin.

I first flip all 1 million coins simultaneously (I’m great at multitasking like that), discarding
any coins that come up tails. I flip all the coins that come up heads a second time, and I again
discard any of these coins that come up tails. I repeat this process, over and over again. If at
any point I am left with one coin, I declare that to be the “luckiest” coin.
But getting to one coin is no sure thing. For example, I might find myself with two coins,

flip both of them and have both come up tails. Then I would have zero coins, never having
had exactly one coin.

What is the probability that I will — at some point — have exactly one “luckiest” coin?

Solution
Let P[N] be the probability that we will have exactly one "luckiest" coin starting withN coins.
We have the following recurrence relation:

P[N] =

N∑
i=1

P[i]
(
N
i

)
2N

=⇒ P[N](1− 1
2N) =

N−1∑
i=1

P[i]
(
N
i

)
2N

=⇒ P[N] =
1

2N − 1

N−1∑
i=1

P[i]
(
N

i

)

because the probability of ending up with i heads when you flip N coins is (
N
i)
2N and then it

is equivalent to starting the game with i coins. When N = 1, P[N] = 1.

Computational solution
From the code below, we get P[100] ≈ 0.7214. Assuming convergence, P[1000000] ≈ 0.7214

from functools import lru_cache
from math import comb

def prob_luckiest_coin(n):

154

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

@lru_cache()
def prob(n):

if n == 1:
return 1

else:
total_prob = 0
for i in range(1, n):

total_prob += prob(i)*comb(n,i)
return total_prob/(2**n-1)

return prob(n)

print(prob_luckiest_coin(100))

155

86 Work A Shift In The Riddler Gift
Shop

Riddler Express
You take half of a vitamin every morning. The vitamins are sold in a bottle of 100 (whole)
tablets, so at first you have to cut the tablets in half. Every day you randomly pull one thing
from the bottle — if it’s a whole tablet, you cut it in half and put the leftover half back in the
bottle. If it’s a half-tablet, you take the vitamin. You just bought a fresh bottle. How many
days, on average, will it be before you pull a half-tablet out of the bottle?
Extra credit: What if the halves are less likely to come up than the full tablets? They are

smaller, after all.

Solution
from random import random

runs = 100000
init_full_tablets = 100
num_days_till_half_tablet = 0

for _ in range(runs):
num_full_tablets = init_full_tablets
num_half_tablets = 0
while(True):

prob_full_tablet = num_full_tablets/(num_full_tablets + num_half_tablets)
prob_half_tablet = 1 - prob_full_tablet
num_days_till_half_tablet += 1
if random() <= prob_full_tablet:

num_full_tablets -= 1
num_half_tablets += 1

else:
num_half_tablets -= 1
break

print(num_days_till_half_tablet/runs)

On average, it will take 13.2 days to pull a half-tablet out of the bottle.

156

87 It’s Elementary, My Dear
Riddler!

You have four fair tetrahedral dice whose four sides are numbered 1 through 4.
You play a game in which you roll them all and divide them into two groups: those whose

values are unique, and those which are duplicates. For example, if you roll a 1, 2, 2 and 4, then
the 1 and 4 will go into the “unique” group, while the 2s will go into the “duplicate” group.

Next, you reroll all the dice in the duplicate pool and sort all the dice again. Continuing the
previous example, that would mean you reroll the 2s. If the result happens to be 1 and 3, then
the “unique” group will now consist of 3 and 4, while the “duplicate” group will have two 1s.
You continue rerolling the duplicate pool and sorting all the dice until all the dice are

members of the same group. If all four dice are in the “unique” group, you win. If all four are
in the “duplicate” group, you lose.

What is your probability of winning the game?

Solution
The probability of winning the game is 0.45.

from random import choice
from collections import Counter

def win_prob(n, s, runs=100000):
def roll(s,n):

return [choice(range(1, s+1)) for _ in range(n)]

wins = 0
for i in range(runs):

throw = roll(s, n)
while True:

ctr = Counter(throw)
if len(ctr.keys()) == n:

wins += 1
break

if all([True if c > 1 else False for c in ctr.values()]):
break

throw = []
for k,v in ctr.items():

if v == 1:
throw.append(k)

else:
throw += roll(s, v)

return wins/runs
print(win_prob(4, 4))

157

88 Can You Fold All Your Socks?
In my laundry basket, I have 14 pairs of socks that I need to pair up. To do this, I use a chair

that can fit nine socks, at most. I randomly draw one clean sock at a time from the basket. If
its matching counterpart is not already on the chair, then I place it in one of the nine spots.
But if its counterpart is already on the chair, then I remove it from the chair (making that
spot once again unoccupied) and place the folded pair in my drawer.
What is the probability I can fold all 14 pairs without ever running out of room on my

chair?
Extra credit: What if I change the number of pairs of socks I own, as well as the number of

socks that can fit on my chair?

Computational Solution
The probability that you can fold all 14 pairs without ever running out of room on my chair
is 0.7.

from random import choice

def succ_prob(n_pairs, n_slots, runs=100000):
fail_cnt = 0
for _ in range(runs):

basket = set((i,t) for i in range(n_pairs) for t in [0,1])
chair = set()
while basket:

(i,t) = choice(list(basket))
basket.remove((i,t))
if (i,1-t) in chair:

chair.remove((i,1-t))
else:

chair.add((i,t))
if len(chair)>n_slots:

fail_cnt += 1
break

return 1- (fail_cnt/runs)

print(succ_prob(14,9))

158

89 Can You Salvage Your Rug?
Today I happen to be celebrating the birthday of a family member, which got me wondering

about how likely it is for two people in a room to have the same birthday.
Suppose people walk into a room, one at a time. Their birthdays happen to be randomly

distributed throughout the 365 days of the year (and no one was born on a leap day). The
moment two people in the room have the same birthday, no more people enter the room
and everyone inside celebrates by eating cake, regardless of whether that common birthday
happens to be today.

On average, what is the expected number of people in the room when they eat cake?
Extra credit: Suppose everyone eats cake the moment three people in the room have the

same birthday. On average, what is this expected number of people?

Computational Solution
The expected number of people in the room when they eat cake is 23.67.

from random import choice

def avg_num_people(runs=100000):
ppl_cnt = 0
for _ in range(runs):

people_in = set()
while True:

new_person = choice(range(365))
if new_person in people_in:

break
people_in.add(new_person)

ppl_cnt += len(people_in)
return ppl_cnt/runs

print(avg_num_people())

159

90 Can You Make The Fidget
Spinner Go Backwards?

A thousand people are playing Lotería, also known as Mexican bingo. The game consists
of a deck of 54 cards, each with a unique picture. Each player has a board with 16 of the 54
pictures, arranged in a 4-by-4 grid. The boards are randomly generated, such that each board
has 16 distinct pictures that are equally likely to be any of the 54.
During the game, one card from the deck is drawn at a time, and anyone whose board

includes that card’s picture marks it on their board. A player wins by marking four pictures
that form one of four patterns, as exemplified below: any entire row, any entire column, the
four corners of the grid and any 2-by-2 square.

Four four-by-four grids are shown. In the first grid, the third row has four blue markers. In
the second grid, the second column has four blue markers. In the third grid, the four corner
squares are marked. And in the fourth grid, the two middle squares in the third and fourth
columns are marked, forming a smaller two-by-two square. After the fourth card has been
drawn, there are no winners. What is the probability that there will be exactly one winner
when the fifth card is drawn?

Solution
Using the Python code below for Monte Carlo simulation, we see that the required probability
is 0.181.

from numpy import array, vstack, apply_along_axis
from numpy.random import choice

def cond_probability(n=1000, d=5, runs=1000):
def win(board, cards):

win_patches = [[0,1,2,3], [4,5,6,7], [8,9,10,11], [12,13,14,15],
[0,4,8,12], [1,5,9,13],[2,6,10,14], [3,7,11,15],
[0,3,12,15], [0,1,4,5], [1,2,5,6], [2,3,6,7],
[4,5,8,9], [5,6,9,10], [6,7,10,11], [8,9,12,13],
[9,10,13,14], [10,11,14,15]]

return any([set(board[tiles]).issubset(cards) for tiles in win_patches])

cnt_not_match4, cnt_match5 = 0, 0
for _ in range(runs):

rand_boards = vstack([choice(range(54), 16, replace=False) for _ in range(n)])
drawn_cards = choice(range(54), d, replace=False)

160

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

if not any(apply_along_axis(win, 1, rand_boards, drawn_cards[0:4])):
cnt_not_match4 += 1
if sum(apply_along_axis(win, 1, rand_boards, drawn_cards))==1:

cnt_match5 += 1
return cnt_match5/cnt_not_match4

print(cond_probability())

161

91 When Will The Fall Colors Peak?

Riddler Express
The end of daylight saving time here on the East Coast of the U.S. got me thinking more
generally about the calendar year. Each solar year consists of approximately 365.24217 mean
solar days. That’s pretty close to 365.25, which is why it makes sense to have an extra day
every four years. However, the Gregorian calendar is a little more precise: There are 97
leap years every 400 years, averaging out to 365.2425 days per year. Can you make a better
approximation than the Gregorian calendar? Find numbers L and N (where N is less than
400) such that if every cycle ofN years includes L leap years, the average number of days per
year is as close as possible to 365.24217.

Solution
The brute-force search using the code below gives us N = 351 and L = 85.

min_err, N, L = 1, None, None
for n in range(1, 400):

for l in range(1,n):
err = abs(365.24217*n - 365*n - l)
if err < min_err:

min_err, N, L = err, n, l
print(N, L, min_err)

Riddler Classic
It’s peak fall foliage season in Riddler Nation, where the trees change color in a rather
particular way. Each tree independently begins changing color at a random time between
the autumnal equinox and the winter solstice. Then, at a random later time for each tree —
between when that tree’s leaves began changing color and the winter solstice — the leaves of
that tree will all fall off at once.At a certain time of year, the fraction of trees with changing
leaves will peak. What is this maximal fraction?

Solution
The maximal fraction as per the simulation below is .367.

import numpy as np
from random import choice
def maximal_fraction(n_tps = 10000, n_trees= 100000):

trees = np.zeros((n_trees, n_tps))
for i in range(n_trees):

s = choice(range(n_tps-1))
e = choice(range(s+1, n_tps))
trees[i,s:e] = 1

return np.max(np.sum(trees, axis=0))/n_trees

print(maximal_fraction())

162

92 Can you knock down the gates?
I have made a square peanut butter and jelly sandwich, and now it’s time to slice it. But

rather than making a standard horizontal or diagonal cut, I instead pick two random points
along the perimeter of the sandwich and make a straight cut from one point to the other.
(These points can be on the same side.) My slice is “reasonable” if I cut the square into two
pieces and the smaller resulting piece has an area that is at least one-quarter of the whole
area. What is the probability that my slice is reasonable?

Solution
Without loss of generality, we can assume that the square is a unit square. To select two
random points on the perimeter of the square, we first select two sides with replacement
and then select a random point on each side. We now have to consider three cases.

Two points on the same side
The probability of this event is 4

16 =
1
4 . It is easy to see that in this case, the slice can never be

reasonable.

Two points on adjacent sides
The probability of this event is 8

16 = 1
2 . In this case, the smaller piece is a triangle whose

vertices are the two selected points and the vertex of the square that is common to the two
selected adjacent sides. We need the probability that the area of this triangle is greater than 1

4 ,

P
[
1
2XY ⩾

1
4

]
, where X ∼ U[0, 1], Y ∼ U[0, 1] and X, Y are independent

The CDF of XY is given by

FXY(z) = P [XY ⩽ z] = z− z log z, 0 < z ⩽ 1

Therefore the required probability is

1− F

(
1
2

)
=

1
2 +

1
2 log

1
2

Two points on opposite sides
The probability of this event is 4

16 =
1
4 . In this case, the smaller piece is a trapezium whose

area is between 1
4 and

1
2 . We need the probability,

P
[
1
4 ⩽

1
2(X+ Y) <

1
2

]
or P

[
1
4 ⩽

1
2(1− X+ 1− Y) <

1
2

]
where X ∼ U[0, 1], Y ∼ U[0, 1] and X, Y are independent.

163

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

The CDF of X+ Y is given by

FX+Y(z) = P [X+ Y ⩽ z] =
z2

2 , 0 ⩽ z ⩽ 1

From symmetry, the required probability is

2
(
F(1) − F

(
1
2

))
=

3
4

Total probability
Therefore, the probability that the slice is reasonable is given by

1
2

(
1
2 +

1
2 log

1
2

)
+

1
4 · 34 =

7
16 −

log 2
4 ≈ 0.2642

Computational verification
The simulation below gives the probability of a reasonable slice to be 0.2645.

from random import choices, random

def prob_reasonable_slice(runs = 1000000):
sides = ["a","b","c","d"]
adj_sides = ["ab","bc","cd","ad"]
opp_sides = ["ac","bd"]
succ = 0
for _ in range(runs):

s1, s2 = choices(sides, k=2)
x, y = random(), random()
if s1 != s2:

if "".join(sorted([s1,s2])) in adj_sides:
if x*y/2 >= 0.25:

succ += 1
if "".join(sorted([s1,s2])) in opp_sides:

if min((x+y)/2, (1-x+1-y)/2) >= 0.25:
succ += 1

return succ/runs

print(prob_reasonable_slice())

164

93 HowMany Turkey Trotters Can
You Pass?

I have five kinds of fair Platonic dice: tetrahedra (whose faces are numbered 1− 4), cubes
(numbered 1−6), octahedra (numbered 1−8), dodecahedra (numbered 1−12) and icosahedra
(numbered 1− 20). When I roll two of the cubes, there is a single most likely sum: seven. But
when I roll one cube and two tetrahedra, there is no single most likely sum — eight and nine
are both equally likely.

Which whole numbers are never the single most likely sum, no matter which combinations
of dice I pick?

Solution

165

94 Can You Win The Riddler
Football Playoff?

Riddler Express
World Cup group play consists of eight groups, each with four teams. The four teams in a
group all play each other once (for a total of six matches), earning three points for a win, one
point for a draw and zero points for a loss.

After group play in a particular group, all four teams have different numbers of points. The
first-place team has A points, the second-place team B points, the third place team C points
and the last-place team D points. Find all possible quadruples (A,B,C,D).

Solution
The thirteen quadruples satisfying the conditions of the problem are:

• (5, 4, 3, 2)

• (6, 5, 4, 1)

• (7, 4, 3, 1)

• (7, 4, 3, 2)

• (7, 5, 2, 1)

• (7, 5, 3, 1)

• (7, 5, 4, 0)

• (7, 6, 2, 1)

• (7, 6, 3, 1)

• (7, 6, 4, 0)

• (9, 4, 2, 1)

• (9, 4, 3, 1)

• (9, 6, 3, 0)

166

Vamshi Jandhyala (February 3, 2023) Riddler Solutions

The code below was used for identifying the quadruples.

import numpy as np
from itertools import combinations, product

def scores(i, j):
scores = [np.zeros(4) for _ in range(3)]
scores[0][i], scores[1][j], scores[2][i], scores[2][j] = 3, 3, 1, 1
return scores

uniq_scores = set()
for all_scores in product(*[scores(i,j) for i,j in combinations(range(4),2)]):

a,b,c,d = tuple(sorted(np.sum(np.vstack(all_scores), axis=0), reverse=True))
if a != b != c != d:

uniq_scores.add((a,b,c,d))
print(len(uniq_scores), uniq_scores)

Riddler Classic
Speaking of “football,” the Riddler Football Playoff (RFP) consists of four teams. Each team is
assigned a random real number between 0 and 1, representing the “quality” of the team. If
team A has quality a and team B has quality b, then the probability that team A will defeat
team B in a game is a/(a+ b).

In the semifinal games of the playoff, the team with the highest quality (the “1 seed”) plays
the team with the lowest quality (the “4 seed”), while the other two teams play each other as
well. The two teams that win their respective semifinal games then play each other in the
final.

On average, what is the quality of the RFP champion?

Solution
From the simulation below, we see that the average quality of the RFP champion is 0.674.

from random import random

def avg_quality(runs=1000000):
win = lambda p, q: p if random() < p/(p+q) else q
sum_q = 0
for _ in range(runs):

a, b, c, d = sorted([random() for _ in range(4)])
sum_q += win(win(a,d), win(b,c))

return sum_q/runs

print(avg_quality())

167

	Where do the Rancher's children roam?
	Can You Knock Down The Last Bowling Pin?
	Can You Find Your Pills?
	Can You Make Room For Goats?
	How Long Will Your Smartphone Distract You From Family Dinner?
	Will The Neurotic Basketball Player Make His Next Free Throw?
	Night Falls. A Storm Rolls In. Can You Cross The River?
	How Many Cars Will Get Stuck In Traffic?
	Will Someone Be Sitting In Your Seat On The Plane?
	Should You Pay $250 To Play This Casino Game?
	Should You Shoot Free Throws Underhand?
	Can You Slay The Puzzle Of The Monsters’ Gems?
	Can You Solve This Elevator Button Puzzle?
	The Puzzle Of Misanthropic Neighbors?
	You Have $1 Billion To Win A Space Race. Go.
	Should The Grizzly Bear Eat The Salmon?
	How Long Will It Take To Blow Out The Birthday Candles?
	Who Steals The Most In A Town Full Of Thieves?
	Can You Pick Up Sticks? Can You Help A Frogger Out?
	How Do You Like Them Rectangles?
	Will You Be A Ghostbuster Or A World Destroyer?
	How Often Does The Senate Vote In Palindromes?
	Where Will The Seven Dwarfs Sleep Tonight?
	Help Us Find These Missing Pieces
	When Will The Arithmetic Anarchists Attack?
	Can You Shuffle Numbers? Can You Find All The World Cup Results?
	Can You Rescue The Paratroopers?
	Will The Grasshopper Land In Your Yard?
	The Eternal Question: How Much Do These Apricots Weigh?
	What Are The Odds You’d Already Have My Number?
	What Comes After 840? The Answer May Surprise You
	How Low Can You Roll?
	How Many Ways Can You Raid The Candy Shop?
	Who Wants To Be A Riddler Millionaire?
	Can You Track The Delirious Ducks?
	Can You Find A Number Worth Its Weight In Letters?
	Can You Solve The Vexing Vexillology?
	Can You Find A Matching Pair Of Socks?
	Can You Get A Haircut Already?
	How Good Are You At Guess Who?
	Can You Time The Stoplight Just Right?
	Same number on all the dies
	Can You Tell When The Snow Started?
	Can you flip the magic coin?
	Centered Pentagonal Number
	Breaking a slide rule into four pieces
	Can You Reach The Summit First?
	Can You Cut The Square … Into More Squares?
	Can You Hunt For The Mysterious Numbers?
	Can You Skillfully Ski The Slopes?
	Little Cubes
	Can You Randomly Move The Tower?
	Can You Cross Like A Boss?
	Will The Knight Return Home?
	The Puzzle Of The Lonesome King
	How Much Will The Picky Eater Eat?
	En Garde! Can You Win The Fencing Relay?
	Can You Slice The Ice?
	Can you stick it to the genie?
	How Many Friends Are On The Riddler Social Network?
	Can You Survive Squid Game?
	Who Betrayed Dune’s Duke Leto?
	Can You Climb Your Way To Victory?
	Can You Bake The Radish Pie?
	Can You Get The Paper Cut?
	Can You Draft A Riddler Fantasy Football Dream Team?
	Can you catch the cricket?
	Are You Clever Enough?
	Will Riddler Nation Win Gold In Archery?
	Can You Hop Across The Chess Board?
	Can You Win The Penalty Shootout?
	Can You Solve This Astronomical Enigma?
	Can You Decipher The Secret Message?
	Can You Crack The Case Of The Crystal Key?
	No Isosceles Triangles For You!
	Can You Systematically Solve A Friday Crossword?
	Can You Cut The Perfect Pancake?
	Can You Crack The Case Of The Crescent Moon?
	Can You Navigate The One-Way Streets?
	Can You Find An Extra Perfect Square?
	Can You Bake The Biggest Pie?
	Can You Bat .299 In 299 Games?
	How Many Ways Can You Build A Staircase?
	Can You Win Riddler Jenga?
	Can you find the luckiest coin?
	Work A Shift In The Riddler Gift Shop
	It’s Elementary, My Dear Riddler!
	Can You Fold All Your Socks?
	Can You Salvage Your Rug?
	Can You Make The Fidget Spinner Go Backwards?
	When Will The Fall Colors Peak?
	Can you knock down the gates?
	How Many Turkey Trotters Can You Pass?
	Can You Win The Riddler Football Playoff?

